Structural-phase transformations and crystallographic texture in commercial Ti–6Al–4V alloy with globular morphology of α-phase grains: the rolling plane

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The commercial Ti–6Al–4V alloy was obtained in an almost single-phase state, formed by finely dispersed globular α-grains with an average size of 12 μm, using thermomechanical processing, including hot rolling. The microtexture and structure of the alloy were studied using X-ray diffractometry and transmission and scanning electron microscopy, including orientation microscopy. It is found that for α-grains the Burgers orientation relationships are satisfied, and twin orientations are ensured in the rolling plane. A significant scattering of the crystallographic orientations of α-grains relative to each other (up to 10°–15°) is established for each group of close Burgers orientations as a result of plastic deformation by rolling at high temperatures. Clusters of microtexture regions in the layered microstructure of grains and the formation mechanisms and mutual crystallographic misorientations of microtexture regions and grains in the alloy have been identified.

作者简介

V. Pushin

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Institute of Continuous Media Mechanics, Ural Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: pushin@imp.uran.ru
俄罗斯联邦, Ekaterinburg, 620108; Perm’, 614013

D. Rasposienko

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: pushin@imp.uran.ru
俄罗斯联邦, Ekaterinburg, 620108

Yu. Gornostyrev

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Institute of Continuous Media Mechanics, Ural Branch, Russian Academy of Sciences

Email: pushin@imp.uran.ru
俄罗斯联邦, Ekaterinburg, 620108; Perm’, 614013

N. Kuranova

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: pushin@imp.uran.ru
俄罗斯联邦, Ekaterinburg, 620108

V. Makarov

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: pushin@imp.uran.ru
俄罗斯联邦, Ekaterinburg, 620108

E. Marchenkova

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: pushin@imp.uran.ru
俄罗斯联邦, Ekaterinburg, 620108

A. Svirid

Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences

Email: pushin@imp.uran.ru
俄罗斯联邦, Ekaterinburg, 620108

O. Naimark

Institute of Continuous Media Mechanics, Ural Branch, Russian Academy of Sciences

Email: pushin@imp.uran.ru
俄罗斯联邦, Perm’, 614013

A. Balakhnin

Institute of Continuous Media Mechanics, Ural Branch, Russian Academy of Sciences

Email: pushin@imp.uran.ru
俄罗斯联邦, Perm’, 614013

V. Oborin

Institute of Continuous Media Mechanics, Ural Branch, Russian Academy of Sciences

Email: pushin@imp.uran.ru
俄罗斯联邦, Perm’, 614013

参考

  1. Цвиккер У. Титан и его сплавы. М.: Мир, 1979. 512 с.
  2. Полькин И.С. Упрочняющая термическая обработка титановых сплавов. М.: Металлургия, 1984. 96 с.
  3. Ильин А.А. Механизм и кинетика фазовых и структурных превращений в титановых сплавах. М.: Наука, 1994. 304 с.
  4. Пушин В.Г., Кондратьев В.В., Хачин В.Н. Предпереходные явления и мартенситные превращения. Екатеринбург: УрО РАН, 1998. 368 с.
  5. Ильин А.А., Колачев Б.А., Полькин И.С. Титановые сплавы. Состав, структура, свойства. Справочник. М.: ВИЛС, 2009. 520 с.
  6. Banerjee D., Williams J.C. Perspectives of titanium science and technology // Acta Mater. 2013. V. 61. P. 844–879.
  7. Bonisch M., Panigrahi A., Stoica M., Calin M., Ahrens E., Zehetbauer M., Skrotzki M., Eckert J. Giant thermal expansion and a-precipitation pathways in Ti-alloys // Nature Comm. 2017. V. 8. P. 1429.
  8. Mosheh A.O., Mikhaylovskaya A.V., Kotov A.D., Kwame J.S., Aksenov S.A. Superplasticity of Ti-6Al-4V titanium alloy: macrostructure evolution and constitutive modelling // Materials. 2019. V. 12. P. 1756.
  9. Котов А.Д., Михайловская А.В., Мослех А.О., Пурсело Т.П., Просвиряков А.С., Портной В.К. Сверхпластичность ультрамелкозернистого титанового сплава Ti-4% Al-1% V-3% Mo // ФММ. 2019. Т. 120. № 1. С. 63–72.
  10. Evans W.J., Gostelow C.R. The effect of hold time on the fatigue properties of a β-processed titanium alloy // Metall. Trans. A. 1979. V. 10. P. 1837–1846.
  11. Evans W.J., Bache M.R. Dwell-sensitive fatigue under biaxial loads in the near-alpha titanium alloy IMI685 // Int. J. Fatig. 1994. V. 16. P. 443–452.
  12. Bache M., Cope M., Davies H., Evans W., Harrison G. Dwell sensitive fatigue in a near alpha titanium alloy at ambient temperature // Int. J. Fatigue. 1997. V. 19(93). P. 83–88.
  13. Bache M.R. A review of dwell sensitive fatigue in titanium alloys: the role of microstructure, texture and operating conditions // Int. J. Fatig. 2003. V. 25. P. 1079–1087.
  14. Sinha V., Mills M.J., Williams J.C. Understanding the contributions of normal-fatigue and static loading to the dwell fatigue in a near-alpha titanium alloy // Metall. Mater. Trans. A. 2004. V. 35. № 10. P. 3141–3148.
  15. Tympel P.O., Lindley T.C., Saunders E.A., Dixon M., Dye D. Influence of complex LCF and dwell load regimes on fatigue of Ti-6Al-4V //Acta Mater. 2016. V. 103. P. 77–88.
  16. Toubal L., Bocher P., Moreau A. Dwell-fatigue life dispersion of a near alpha titanium alloy // Int. J. of Fatigue. 2009. V. 31. P. 601–605.
  17. Pilchack A.L. Fatigue crack growth rates in alpha titanium: Faceted vs. striation growth // Scripta Mater. 2013. V. 68. P. 277–280.
  18. Pilchack A.L. A simple model to account for the role of microtexture on fatigue and dwell fatigue lifetimes of titanium alloys // Scripta Mater. 2014. V. 74. P. 68–71.
  19. Cuddihy M.A., Stapleton A., Williams S., Dunne F.P.E. On cold dwell facet fatigue in titanium alloy aero-engine components // Int. J. Fatig. 2017. V. 97. P. 177–189.
  20. Xu Y., Joseph S., Karamched P., Fox K., Rugg D., Dunne F.P.E., Dye D. Predicting dwell fatigue life in titanium alloys using modelling and experiment // Nature communications. 2020. V. 11. P. 5868.
  21. Hu Z., Zhou X., Liu H., Yi D. The formation of microtextured region during thermo-mechanical processing in a near-b titanium alloy Ti-5Al-5Mo-5V-1Cr-1Fe // J. All. Comp. 2021. V. 853. P. 156964.
  22. Rezaei M., Zarei-Hanzaki A., Anousheh A.S., Abedi H.R., Pahlevani F., Hossain R., Sahajwalla V., Berto F. On the damage mechanisms during compressive dwell-fatigue of β-annealed Ti-6242S alloy // Int. J. Fatig. 2021. V. 146. P. 106158.
  23. Britton T.B., Birosca S., Preuss, M., Wilkinson A.J. Electron backscatter diffraction study of dislocation content of a macrozone in hot-rolled Ti-6Al-4V alloy // Scr. Mater. 2010. V. 62. № 9. P. 639–642.
  24. Littlewood P.D., Wilkinson A.J. Local deformation patterns in Ti-6Al-4V under tensile, fatigue and dwell fatigue loading // Int. J. Fatigue. 2012. V. 43. P. 111–119.
  25. Warwick J.L.W., Jones N.G., Bantounas I., Preuss M., Dye D. In-situ observation of texture and microstructure evolution during rolling and globularisation on Ti-6Al-4V //Acta Mater. 2013. V. 61. 1603–1615.
  26. Kulkarni G., Hiwarkar V., Singh R. Texture evolution of Ti6Al4V during cold deformation // Int. J. Mater. Mechan. Manufact. 2019. V. 7. № 6. P. 250–253.
  27. Muth A., John R., Pilchak A., Kalidindi S.R., McDowell D.L. Analysis of Fatigue Indicator Parameters for Ti-6Al-4V microstructures using extreme value statistics in the transition fatigue regime // Int. J. of Fatigue. 2021. V. 153. P. 106441.
  28. Modina I.M., Dyakonov G.S., Stotskiy A.G., Yakovleva T.V., Semenova I.P. Effect of the texture of the ultrafine-grained Ti-6Al-4V titanium alloy on impact toughness // Materials. 2023. V. 16. P. 1318.
  29. Oborin V., Balakhnin A., Naimark O., Gornostyrev Y., Pushin V., Kuranova N., Rasposienko D., Svirid A., Uksusnikov A., Inozemtsev A., Gabov I. Damage-failure transition in titanium alloy Ti-6Al-4V under dwell fatigue loads // Fratturaed Integrità Strutturale. 2024. V. 18. № 67. P. 217–230.
  30. Naimark O., Bayandin Yu., Uvarov S., Bannikova I., Saveleva N. Critical Dynamics of Damage-Failure Transition in Wide Range of Load Intensity // Acta Mechanica. 2021. V. 232. P. 1943–1959.
  31. Naimark O., Oborin V., Bannikov M., Ledon D. Critical Dynamics of Defects and Mechanisms of Damage-Failure Transitions in Fatigue // Materials. 2021. V. 14. № 10. P. 2554.
  32. Пушин В.Г., Распосиенко Д.Ю., Горностырев Ю.Н., Куранова Н.Н., Макаров В.В., Свирид А.Э., Наймарк О.Б., Балахнин А.Н., Оборин В.А. Структурно-фазовые превращения и кристаллографическая текстура в промышленном сплаве Ti-6Al-4V с глобулярной морфологией зерен a-фазы. Поперечное сечение плиты, перпендикулярное направлению прокатки // ФММ. 2024. № 7. (в печати)
  33. Пушин В.Г., Распосиенко Д.Ю., Горностырев Ю.Н., Куранова Н.Н., Макаров В.В., Свирид А.Э., Наймарк О.Б., Балахнин А.Н., Оборин В.А. Структурно-фазовые превращения и кристаллографическая текстура в промышленном сплаве Ti-6Al-4V с глобулярной морфологией зерен a-фазы. Поперечное сечение плиты вдоль направления прокатки // ФММ. 2024. № 7. (в печати).
  34. Bohemen S.M.C., Kamp A., Petrov R.N., Kestens L.A.I., Sietsma J. Nucleation and variant selection of secondary a-plates in β Ti alloy //Acta Mater. 2008. V. 56. P. 5907–5914.
  35. Laine S. The role of twinning deformation of a-phase titanium. Cambridge: University of Cambridge. 2017. 224 p.

补充文件

附件文件
动作
1. JATS XML