Роль биоплёнок в адаптации микроорганизмов к неблагоприятным факторам окружающей среды на примере Pseudomonas aeruginosa (обзор литературы)

Обложка

Цитировать

Полный текст

Аннотация

Pseudomonas aeruginosa - широко представленный вид бактерий, обладающий патогенным потенциалом. Данный инфекционный агент является возбудителем раневых инфекций, фиброзного цистита, фиброзирующей пневмонии, бактериального сепсиса и других патологий. Микроорганизм отличается высокой устойчивостью к антисептикам и дезинфектантам, а также специфическим реакциям иммунной системы организма. Реакции чувства кворума данного вида бактерий обеспечивают включение многих факторов патогенности. Одним из важных особенностей синегнойной палочки является её способность к образованию биоплёнок (в качестве одной из реакций чувства кворума), что считается одним из факторов устойчивости к антибиотикам и антисептикам. Анализ научной литературы позволил сформулировать четыре вопроса, касающихся роли биоплёнок для адаптации P. aeruginosae к неблагоприятным факторам окружающей среды. Является ли источником заражения P. aeruginosa другой человек или преимущественно этиологический агент находится в окружающей среде? Оказывает ли влияние на антибиотикорезистентность образование биоплёнки? Каким образом реализуется антагонистическая активность микроорганизмов в биоплёночной форме? Какова основная функция биоплёнок в функционировании бактерий? Авторами была выдвинута гипотеза о том, что влияние биоплёнки на повышение антибиотикорезистентности бактерий и, в частности, P. aeruginosae, носит вторичный характер. Вызывает сомнение, что биоплёнка сама по себе способна выполнять барьерную функцию, защищающую от антибиотиков, как минимум ввиду несопоставимости молекулярных радиусов большинства антибиотиков и пор в биоплёнке. Однако барьерная функция в отношении антител и иммунокомпетентных клеток не вызывает сомнений. Более вероятно, что биоплёнка выполняет функцию запасания питательных веществ и обеспечения топической конкуренции в условиях дефицита пищевых ресурсов.

Об авторах

Василий Николаевич Афонюшкин

ФГБУН «Сибирский федеральный центр агробиотехнологий Российской академии наук»

Автор, ответственный за переписку.
Email: lisocim@mail.ru
ORCID iD: 0000-0001-5177-4733

Кандидат биол. наук, зав. сектором молекулярной биологии СФНЦА РАН, 630501, Новосибирская область, п. Краснообск.

e-mail: lisocim@mail.ru

Россия

Н. А. Донченко

ФГБУН «Сибирский федеральный центр агробиотехнологий Российской академии наук»

Email: noemail@neicon.ru
ORCID iD: 0000-0002-0885-0515
Россия

Ю. Н. Козлова

ФГБУН «Институт химической биологии и фундаментальной медицины СО РАН»

Email: noemail@neicon.ru
ORCID iD: 0000-0003-0811-8110
Россия

Н. В. Давыдова

ФГБУН «Сибирский федеральный центр агробиотехнологий Российской академии наук»

Email: noemail@neicon.ru
ORCID iD: 0000-0002-4831-2957
Россия

В. Ю. Коптев

ФГБУН «Сибирский федеральный центр агробиотехнологий Российской академии наук»

Email: noemail@neicon.ru
ORCID iD: 0000-0003-0537-6659
Россия

В. С. Черепушкина

ФГБУН «Сибирский федеральный центр агробиотехнологий Российской академии наук»

Email: noemail@neicon.ru
ORCID iD: 0000-0002-3378-7335
Россия

Список литературы

  1. Peleg A.Y., Hooper D.C. Hospital-acquired infections due to gram-negative bacteria. N Engl J Med. 2010; 362 (19): 1804-13. https://doi.org/10.1056/NEJMra0904124
  2. Cross A., Allen J.R., Burke J., Ducel G., Harris A., John J. et al. Nosocomial infections due to Pseudomonas aeruginosa: review of recent trends. Rev Infect Dis. 1983; 5 (Suppl 5): 837-45.
  3. Gibson R.L., Burns J.L., Ramsey B.W. Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med. 2003; 168 (8): 918-51.
  4. Singh P.K., Schaefer A.L., Parsek M.R., Moninger T.O., Welsh M.J., Greenberg E.P. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature. 2000; 407 (6805): 762-4. https://doi.org/10.1038/35037627
  5. Литвин В. Сапрофитная фаза в экологии возбудителей инфекционных заболеваний. Журнал микробиологии, эпидемиологии и иммунобиологии. 1985; 1: 98-103.
  6. Сомов Г.П., Варвашевич Т.Н., Тимченко Н.Ф. Психрофильность патогенных бактерий. Новосибирск: Наука; 1991. 201 с.
  7. Hardalo C., Edberg S.C. Pseudomonas aeruginosa: assessment of risk from drinking water. Crit Rev Microbiol. 1997; 23 (1): 47-75.
  8. Blanc D.S. The use of molecular typing for the epidemiological surveillance and investigation of endemic nosocomial infections. Infect Genet Evol. 2004; (4): 193-7.
  9. Grundmann H., Kropec A., Hartung D., Berner R., Daschner F. Pseudomonas aeruginosa in a neonatal intensive care unit: reservoirs and ecology of the nosocomial pathogen. J Infect Dis. 1993; 168 (4): 943-7.
  10. Гостев В.В., Сидоренко С.В. Бактериальные биоплёнки и инфекции. Журнал инфектологии. 2010; 2 (3): 4-15
  11. Costerton J.W., Stewart P.S., Greenberg E.P. Bacterial biofilms: a common cause of persistent infections. Science. 1999; 284: 1318-22.
  12. Costerton W., Veeh R., Shirtliff M. et al. The application of biofilm science to the study and control of chronic bacterial infections. Clin Invest. 2003; 112: 1466-77.
  13. O’Toolе G.A., Kaplan H.B., Kolter R. Biofilm formation as microbial development. Ann Rev Microbiol. 2000; 54: 49-79.
  14. Tetz V.V. The effect of antimicrobial agents and mutagen on bacterial cells in colonies. Med Microbiol Lett. 1996; 5: 426-36.
  15. Verraes C., Van Boxstael S., Van Meervenne E., Van Coillie E., Butaye P., Catry B. et al. Antimicrobial Resistance in the Food Chain: A Review. Int J Environ Res Public Health. 2013; 10: 2643-69.
  16. Freedman D.J., Kondo J.K., Willrett D.L. Antagonism of Foodborne Bacteria by Pseudomonas spp.: A Possible Role for Iron. J Food Prot. 1989; 52 (7): 484-9.
  17. El-Shouny W.A., Al-Baidani A.R.H., Hamza W.T. Antimicrobial Activity of Pyocyanin Produced by Pseudomonas aeruginosa Isolated from Surgical Wound-InfectionsInternational. Journal of Pharmacy and Medical Sciences. 2011; 1 (1): 1-7.
  18. Gray K.M., Passador L., Iglewski B.H., Greenberg E.P. Interchangeability and specificity of components from the quorum-sensing regulatory systems of Vibrio fischeri and Pseudomonas aeruginosa. J Bacteriol. 1994; 176 (10): 3076-80.
  19. Surette M.G., Miller M.B., Bassler B.L. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc Natl Acad Sci USA. 1999; 96: 1639-44.
  20. Wang X.D., de Boer P.A., Rothfield L.I. A factor that positively regulates cell division by activating transcription of the major cluster of essential cell division genes of Escherichia coli. EMBO J. 1991; 10 (11): 3363-72.
  21. Michael B., Smith J.N., Swift S., Heffron F., Ahmer B.M. SdiA of Salmonella enteric is a LuxR homolog that detects mixed microbial communities. J Bacteriol. 2001; 183: 5733-42.
  22. Swift S., Lynch M.J., Fish L., Kirke D.F., Tomas J.M., Stewart G.S. et al. Quorum sensing-dependent regulation and blockade of exoprotease production in Aeromonashydrophila. Infect Immun. 1999; 67: 5192-9.
  23. Manefield M., Rasmussen T.B., Henzter M., Andersen J.B., Steinberg P., Kjelleberg S. et al. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology. 2002; 148: 1119-27.
  24. Smith K.M., Bu Y., Suga H. Induction and inhibition of Pseudomonas aeruginosa quorum sensing by synthetic autoinducer analogs. Chem Biol. 2003; 10: 81-9.
  25. Lin Y.-H., Xu J.-L., Hu J., Wang L.-H., Ong S.L., Leadbetter J.R. et al. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol. 2003; 47: 849-60.
  26. Dong Y.-H., Xu J.-L., Li X.-Z., Zhang L.H. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwiniacarotovora. Proc Natl Acad Sci USA. 2000; 97: 3526-31.
  27. Hentzer M. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J. 2003; 22: 3803-15.
  28. Hoang T.T., Schweizer H.P. Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI): a target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis. J Bacteriol. 1999; 181: 5489-97.
  29. Stephenson K., Yamaguchi Y., Hoch J.A. The mechanism of action of inhibitors of bacterial two component signal transduction systems. J Biol Chem. 2000; 275: 38900-4.
  30. Huang J.J., Han J.-I., Zhang L.-H., Leadbetter J.R. Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Appl Environ Microbiol. 2003; 69 (10): 5941-9.
  31. Park S.-Y., Kang H.-O., Jang H.-S., Lee J.-K., Koo B.-T., Yum D.-Y. Identification of extracellular N-acylhomoserine lactone acylase from a Streptomyces рp. and its application to quorum quenching. Appl Environ Microbiol. 2005; 71: 2632-41.
  32. Branda S.S., Vik Å., Friedman L., Kolter R. Biofilms: the matrix revisited. Trends Microbiol. 2005; 13: 20-6.
  33. Murata K., Inose T., Hisano T., Abe S., Yonemoto Y., Yamashita T. et al. Bacterial alginate lyase: enzymology, genetics and application. J Ferment Bioeng. 1993; 76: 427-37.
  34. Donlan R.M., Costerton J.W. Biofilms: survival mechanisms of clinically relevant microorganisms. Clinic Microbiol Rev. 2002; 15: 167-93.
  35. Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov. 2003; 2: 114-22.
  36. Campanac C., Pineau L., Payard A., Baziard-Mouysset G., Roques C. Interactions between Biocide Cationic Agents and Bacterial Biofilms. Antimicrob Agents Chemother. 2002; 46: 1469-74.
  37. Chambless J.D., Hunt S.M., Philip S.S. A three-dimensional computer model of four hypothetical mechanisms protecting biofilms from antimicrobials. Appl Environ Microbiol. 2006; 72: 2005-13.
  38. Mulcahy H., Charron-Mazenod L., Lewenz S. Extracellular DNA Chelates Cations and Induces Antibiotic Resistance in Pseudomonas aeruginosa Biofilms. PLOS Pathog. https://doi.org/10.1371/journal.ppat.1000213.
  39. Costerton J.W., Stewart P.S., Greenberg E.P. Bacterial biofilms: A common cause of persistent infections. Science. 1999; 284: 1318-22.
  40. Kumon H., Tomochika K., Matunaga T., Ogawa M., Ohmori H. A sandwich cup method for the penetration assay of antimicrobial agents through Pseudomonas exopolysaccharides. Microbiol Immunol. 1994; 38: 615-9.
  41. Hoyle B.D., Alcantara J., Costerton J.W. Pseudomonas aeruginosa biofilm as a diffusion barrier to piperacillin. Antimicrob Agents Chemother. 1992; 36: 2054-6.
  42. Suci P.A., Mittelman M.W., Yu F.P., Geesey G.G. Investigation of ciprofloxacin penetration into Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 1994; 38: 2125-33.
  43. Hogan D., Kolter R. Why are bacteria refractory to antimicrobials? Cur Opinion Microbiol. 2002; 5: 472-7.
  44. Poole K. Mechanisms of bacterial biocide and antibiotic resistance. J Appl Microbiol. 2002; 92: 55-64.
  45. Cotton L.A., Graham R.J., Lee R.J. The Role of Alginate in P. aeruginosa PAO1 Biofilm Structural Resistance to Gentamicin and Ciprofloxacin. JEMI. 2009; 13: 58-62.
  46. Hentzer M., Givskov M. Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Invest. 2003; 112: 1300-7.
  47. Bjarnsholt T., Givskov M. Quorum-sensing blockade as a strategy for enhancing host defences against bacterial pathogens. Phil Trans R Soc B. 2007; 362: 1213-22.
  48. Jefferson K.K. What drives bacteria to produce a biofilm? FEMS Microbiol Lett. 2004; 236: 163-73.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Афонюшкин В.Н., Донченко Н.А., Козлова Ю.Н., Давыдова Н.В., Коптев В.Ю., Черепушкина В.С., 2024



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.