Structure, Microstructure, and Properties of Modified Ceramics (Na,Sr)0.5Bi0.5TiO3

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Single-phase ceramic samples of new compositions (Na1 – хSrх)0.5Bi0.5TiO3 (x = 0–0.5), including those modified by additives of SiO2 and ZnO oxides, have been obtained by solid-phase synthesis. The crystal structure and microstructure of these samples, as well as their dielectric, nonlinear optical, and local piezoelectric properties, have been studied. The formation of a perovskite-type phase with a pseudocubic unit cell in all synthesized samples and an increase in the cell volume as a result of partial substitution of perovskite structure cations are established. A decrease in the temperature of ferroelectric phase transitions (confirmed by the methods of dielectric spectroscopy and laser second-harmonic generation) to the tetragonal paraelectric phase is revealed. Remanent piezoelectric hysteresis loops are obtained for the synthesized samples in the polarization switching mode; this result confirms the occurrence of ferroelectric polarization switching.

Sobre autores

G. Kaleva

Semenov Institute of Chemical Physics, Russian Academy of Sciences, 119991, Moscow, Russia

Email: kaleva@nifhi.ru
Россия, Москва

E. Politova

Semenov Institute of Chemical Physics, Russian Academy of Sciences, 119991, Moscow, Russia

Email: kaleva@nifhi.ru
Россия, Москва

A. Mosunov

Moscow State University, 119991, Moscow, Russia

Email: kaleva@nifhi.ru
Россия, Москва

S. Stefanovich

Moscow State University, 119991, Moscow, Russia

Email: kaleva@nifhi.ru
Россия, Москва

T. Ilina

National University of Science and Technology MISiS, 119049, Moscow, Russia

Email: kaleva@nifhi.ru
Россия, Москва

D. Kiselev

National University of Science and Technology MISiS, 119049, Moscow, Russia

Email: kaleva@nifhi.ru
Россия, Москва

N. Sadovskaya

Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics,” Russian Academy of Sciences, 119333, Moscow, Russia

Autor responsável pela correspondência
Email: kaleva@nifhi.ru
Россия, Москва

Bibliografia

  1. Gupta V., Sharma M., Thakur N. // J. Intel. Mat. Sys. Str. 2010. V. 21. P. 1227. https://doi.org/10.1177/1045389X10381659
  2. Sodano H.A., Henry A., Inman D.J., Park G. // J. Intel. Mat. Sys. Str. 2005. V. 16. P. 799.
  3. Sodano H.A., Park G., Inman D.J. // Strain. 2004. V. 40. P. 49.
  4. Веневцев Ю.Н., Политова Е.Д., Иванов С.А. Сегнето- и антисегнетоэлектрики семейства титаната бария. М.: Химия, 1985, 256 с.
  5. Zhang Sh.J., Eitel R.E., Randall C.A. et al. // Appl. Phys. Lett. 2005. V. 86. P. 262904.
  6. Viola G., Tian Y., Yu C. et al. // Prog. Mater. Sci. 2021. V. 122. P. 100837. https://doi.org/10.1016/j.pmatsci.2021.100
  7. Zheng T., Wu J., Xiao D., Zhu J. // Prog. Mater. Sci. 2018. V. 98. P. 552. https://doi.org/10.1016/j.pmatsci.2018.06.002
  8. Saito Y., Takao H., Tani I. et al. // Nature. 2004. V. 432. P. 84. https://doi.org/10.1038/nature03028
  9. Takenaka T., Nagata H., Hiruma Y. // Jpn. J. Appl. Phys. 2008. V. 47. P. 3787. https://doi.org/10.1143/JJAP.47.3787
  10. Rödel J., Jo W., Seifert T.P. et al. // J. Am. Ceram. Soc. 2009. V. 92. P. 1153. https://doi.org/10.1111/j.1551-2916.2009.03061.x
  11. Panda P.K. // J. Mater. Sci. 2009. V. 44. P. 5049. https://doi.org/10.1007/s10853-009-3643-0
  12. Bernard J., Bencan A., Rojac T. et al. // J. Am. Ceram. Soc. 2008. V. 91. P. 2409. https://doi.org/10.1111/j.1551-2916.2008.02447.x
  13. Смоленский Г.А., Исупов В.А., Аграновская А.И., Крайник Н.Н. // ФТТ. 1961. Т. 2. С. 2982.
  14. Vakhrushev S.B., Isupov V.A., Kvyatkovsky B.E. et al. // Ferroelectrics. 1985. V. 63. P. 153. https://doi.org/10.1080/00150198508221396
  15. Залесский В.Г., Полушина А.Д., Обозова Е.Д. и др. // Письма ЖЭТФ. 2017. Т. 105. № 3. С. 175. https://doi.org/10.7868/S0370274X17030092
  16. Hiruma Y., Nagata H., Takenaka T. // J. Appl. Phys. 2009. V. 105. P. 084112. https://doi.org/10.1063/1.3115409
  17. Chu B.-J., Chen D.-R., Li G.-R., Jin Q.-R. // J. Eur. Ceram. Soc. 2002. V. 22. P. 2115.
  18. Nagata H., Yoshida M., Makiuchi Y., Takenaka T. // Jpn. J. Appl. Phys. 2003. V. 42. Pt. 1. P. 7401. https://doi.org/10.1143/JJAP.42.7401
  19. Ringgaard M.E., Wurlitzer T. // J. Eur. Ceram. Soc. 2005. V. 25. P. 2701. https://doi.org/10.1016/j.jeurceramsoc.2005.03.126
  20. Zuo R., Fang X., Ye C. // Appl. Phys. Lett. 2007 V. 90. P. 092904. https://doi.org/10.1063/1.2710768
  21. Kounga A.B., Zhang S.T., Jo W. et al. // Appl. Phys. Lett. 2008. V. 92. P. 222902. https://doi.org/10.1063/1.2938064
  22. Xiao D.Q., Lin D.M., Zhu J.G., Yu P. // J. Electroceram. 2008. V. 21. P. 34. https://doi.org/10.1007/s10832-007-9087-5
  23. Li H., Liu Q., Zhou J. et al. // J. Eur. Ceram. Soc. 2016. V. 36. P. 2849.
  24. Acosta M., Schmitt L., Molina-Luna L. et al. // J. Am. Ceram. Soc. 2015. V. 98. P. 3405.
  25. Политова Е.Д., Калева Г.М., Голубко Н.В. и др. // Кристаллография. 2018. Т. 63. С. 288. https://doi.org/10.7868/S0023476118020212
  26. Coondoo Indrani Ferroelectrics. Shanghai: In Tech China, 2010. 450 p.
  27. Aksel E., Erdem E., Jakes P. et al. // Appl. Phys. Lett. 2010. V. 97. P. 012903. https://doi.org/10.1063/1.3455888
  28. Steiner S., Seo I.-T., Ren P. et al. // J. Am. Ceram. Soc. 2019. V. 102. P. 5295.
  29. Ming L., Zhang H., Cook S.N. et al. // Chem. Mater. 2015. V. 27. P. 629.
  30. Jones G.O., Thomas P.A. // Acta Cryst. B. 2002. V. 58. P. 168. https://doi.org/10.1107/S0108768101020845
  31. Tan X., Cheng M., Frederick J. et al. // J. Am. Ceram. Soc. 2011. V. 94. P. 4091.
  32. Политова Е.Д., Мосунов А.В., Стребков В.А и др. // Неорган. материалы. 2018. Т. 54. С. 784. https://doi.org/10.7868/S0002337X18070205
  33. Politova E.D., Kaleva G.M., Mosunov A.V. et al. // Ferroelectrics. 2020. V. 560. P. 48. https://doi.org/10.1080/00150193.2020.1722882
  34. Yang F., Wu P., Sinclair D. // Solid State Ionics. 2017. V. 299. P. 38.
  35. Politova E.D., Golubko N.V., Kaleva G.M. et al. // J. Adv. Dielectrics. 2018. V. 8. P. 1850004. https://doi.org/10.1142/S2010135X18500042
  36. Politova E.D., Golubko N.V., Kaleva G.M. et al. // Ferroelectrics. 2019. V. 538. P. 45. https://doi.org/10.1080/00150193.2019.1569984
  37. Белышева Т.В., Гатин А.К., Гришин М.В. и др. // Хим. физика. 2015. Т. 34. № 9. С. 56. https://doi.org/10.7868/S0207401X15090046
  38. Громов В.Ф., Герасимов Г.Н., Белышева Т.В. и др. // Хим. физика. 2018. Т. 37. № 1. С. 76. https://doi.org/10.7868/S0207401X18010065
  39. Kurtz S.K., Perry T.T. // J. Appl. Phys. 1968. V. 39. P. 3798.
  40. Stefanovich S.Yu. // Europ. Conf. on Lasers and Elecrto-Optics (CLEO-Europe'94). Amsterdam. Abstracts. 1994. P. 249.
  41. Gannepalli A., Yablon D.G., Tsou A.H., Proksch R. // Nanotechnology. 2013. V. 24. P. 159501. https://doi.org/10.1088/0957-4484/22/35/355705
  42. Bian J., Xue P., Zhu R. et al. // Appl. Mater. Today. 2020 V. 21. P. 100789. https://doi.org/10.1016/j.apmt.2020.100789
  43. Shvartsman V.V., Lupascu D.C. // J. Am. Ceram. Soc. 2012. V. 95. P. 1. https://doi.org/10.1111/j.1551-2916.2011.04952.x
  44. Lee H.J, Zhang S.H. // Lead-Free Piezoelectrics. N.Y.: Springer, 2012. P. 291. https://doi.org/10.1007/978-1-4419-9598-8_9
  45. Li X., Dong X., Wang F. et al. // J. Eur. Ceram. Soc. 2022. V. 42. P. 2221. https://doi.org/10.1016/j.jeurceramsoc.2021.12.028
  46. Li Q., Liu Y., Withers R.L. et al. // J. Appl. Phys. 2012. V. 112. P. 052006. https://doi.org/10.1063/1.4745979
  47. Kalinin S.V., Gruverman A., Bonnell D.A. // Appl. Phys. Lett. 2004. V. 85. P. 795. https://doi.org/10.1063/1.1775881

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (137KB)
3.

Baixar (3MB)
4.

Baixar (73KB)
5.

Baixar (706KB)
6.

Baixar (691KB)
7.

Baixar (134KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2023