Nanowires made of ternary alloys – synthesis features and magnetic properties
- Autores: Khairetdinova D.R.1,2, Doludenko I.M.2, Perunov I.V.2, Volchkov I.S.2, Panina L.V.1, Zagorskiy D.L.2, Frolov K.V.2, Kanevskii V.M.2
-
Afiliações:
- National University of Science and Technology “MISIS”
- Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
- Edição: Volume 69, Nº 5 (2024)
- Páginas: 866-875
- Seção: НАНОМАТЕРИАЛЫ, КЕРАМИКА
- URL: https://jdigitaldiagnostics.com/0023-4761/article/view/673746
- DOI: https://doi.org/10.31857/S0023476124050132
- EDN: https://elibrary.ru/ZBTPNL
- ID: 673746
Citar
Resumo
Nanowires of FexCoyCu(100–x–y) and FexNiyCu(100–x–y) alloys have been studied. The features of obtaining such structures by the matrix synthesis method have been investigated. Elemental analysis of nanowires grown at sequentially increasing voltages revealed a significant decrease in the amount of copper, as well as a change in the ratio of the main magnetic elements. X-ray phase analysis showed that FeCoCu is a three-component solid solution, while FeNiCu contains three phases of solid solutions: FeCu with copper content up to 80%, FeNi with high iron content, and NiCu in an amorphous or fine-crystalline state with nickel content up to 80%. Mössbauer spectroscopy revealed that the addition of copper can lead to a change in the angle of magnetic moment misalignment in nanowires, which correlates with magnetometry data.
Texto integral

Sobre autores
D. Khairetdinova
National University of Science and Technology “MISIS”; Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Autor responsável pela correspondência
Email: hairetdr@gmail.com
Smart Sensors Laboratory, Department of Electronic Materials Technology
Rússia, Moscow; MoscowI. Doludenko
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: hairetdr@gmail.com
Rússia, Moscow
I. Perunov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: hairetdr@gmail.com
Rússia, Moscow
I. Volchkov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: hairetdr@gmail.com
Rússia, Moscow
L. Panina
National University of Science and Technology “MISIS”
Email: hairetdr@gmail.com
Rússia, Moscow
D. Zagorskiy
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: hairetdr@gmail.com
Rússia, Moscow
K. Frolov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: hairetdr@gmail.com
Rússia, Moscow
V. Kanevskii
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
Email: hairetdr@gmail.com
Rússia, Moscow
Bibliografia
- Tabrett C.P., Sare I.R., Ghomaschi M.R. // Int. Mater. Rev. 1996. V. 41. № 2. P. 59. https://doi.org/10.1179/imr.1996.41.2.59
- Hume-Rothery F.R.S.W., Coles B.R. // Adv. Phys. 1954. V. 3. № 10. P. 149. https://doi.org/10.1080/00018735400101193
- Jiles D.C. // J. Phys. D: Appl. Phys. 1994. V 27. № 1. P. 1. https://doi.org/10.1088/0022-3727/27/1/001
- Slater J.C. // J. Appl. Phys. 1937. V. 8. № 6. P. 385. https://doi.org/10.1063/1.1710311
- James P., Eriksson O., Johanson B. et al. // Phys. Rev. B. 1999. V. 59. № 1. P. 419. https://doi.org/10.1103/PhysRevB.59.419
- Cooper E.I., Bonhote C., Heidmann J. et al. // IBM J. Res. Dev. 2005. V. 49. № 1. P. 103. https://doi.org/10.1147/rd.491.0103
- Bran C., Ivanov Yu.P., García J. et al. // J. Appl. Phys. 2013. V. 114. № 4. P. 043908. https://doi.org/10.1063/1.4816479
- Palmero E.M., Salikhov R., Wiedwald U. et al. // Nanotechnology. 2016. V. 27. № 36. P. 365704. https://doi.org/10.1088/0957-4484/27/36/365704
- Bran C., Palmero E.M., del Real R.P. et al. // Phys. Status Solidi. A. 2014. V. 211. № 5. P. 1076. https://doi.org/10.1002/pssa.201300766
- Хайретдинова Д.Р., Долуденко И.М., Панина Л.В. и др. // ФТТ. 2022. Т. 64. № 9. С. 1144. https://doi.org/10.21883/FTT.2022.09.52798.24HH
- Глинка Н.Л. // Общая химия. М.: Интеграл пресс, 2008. С. 281.
- Mansouri N., Benbrahim-Cherief N., Chainet E. et al. // J. Magn. Magn. Mater. 2020. V. 493. P. 165746. https://doi.org/10.1016/j.jmmm.2019.165746
- Долуденко И.М. // Перспективные материалы. 2021. № 8. С. 74. https://doi.org/10.30791/1028-978X-2021-8-74-80
- Загорский Д.Л., Долуденко И.М., Хайретдинова Д.Р. // Мембраны и мембранные технологии. 2023. Т. 13. № 2. С. 137. https://doi.org/10.31857/S2218117223020074
- Ahmad N., Shafiq M.Z., Khan S. et al. // J. Supercond. Nov. Magn. 2020. V. 33. P. 1495. https://doi.org/10.1007/s10948-019-05394-0
- Shuai L., Liuting Z., Fuying W. et al. // Chinese Chem. Lett. 2024. P. 109566. https://doi.org/10.1016/j.cclet.2024.109566.
- Фролов К.В., Загорский Д.Л., Любутин И.С. и др. // Письма в ЖЭТФ. 2017. Т. 105. № 5. С. 297. https://doi.org/10.7868/S0370274X17050095
- Загорский Д.Л., Фролов К.В., Бедин С.А. и др. // ФТТ. 2018. Т. 60. № 11. С. 2075. https://doi.org/10.21883/FTT.2018.11.46642.08NN
- Долуденко И.М., Загорский Д.Л., Фролов К.В. и др. // ФТТ. 2020. Т. 62. № 9. С. 1464. https://doi.org/10.21883/FTT.2020.09.49772.04H
- Frolov K.V., Chuev M.A., Lyubutin I.S. et al. // J. Magn. Magn. Mater. 2019. V. 489. P. 165415. https://doi.org/10.1016/j.jmmm.2019.165415
- Valderruten J.F., Alcázar G.A.P., Greneche J.M. // J. Phys.: Condens. Matter. 2008. V. 20. № 48. P. 485204. https://doi.org/10.1088/0953-8984/20/48/485204
- Chien C.L., Liou S.H., Kofalt D. et al. // Phys. Rev. B. 1986. V. 33. № 5. P. 3247. https://doi.org/10.1103/PhysRevB.33.3247.
- Miedema A. // Int. J. Mater. Res. 1979. V. 70. № 6. P. 345. https://doi.org/10.1515/ijmr-1979-700601
- Klassert A., Tikana L. // Corrosion behaviour and protection of copper and aluminium alloys in seawater. Cambridge: Woodhead Publishing Ltd, 2007. P. 47.
- Банных О.А., Будберг П.Б., Алисова С.П. и др. Диаграммы состояния двойных и многокомпонентных систем на основе железа. М.: Металлургия, 1986. 440 c.
- Шухардин С.В. Двойные и многокомпонентные системы на основе меди. М.: Наука, 1979. 248 с.
- Фролов К.В., Загорский Д.Л., Любутин И.С. и др. // Письма в ЖЭТФ. 2014. Т. 99. № 9. С. 6556. https://doi.org/10.7868/S0370274X14100038
- Campbell S.J., Clark P.E., Liddell P.R. // J. Phys. F: Met. Phys. 1972. V. 2. № 5. P. L114. https://doi.org/10.1088/0305-4608/2/5/006
- Herr U., Jing J., Gonser U. et al. // Solid State Commun. 1990. V. 76. № 2. P. 197. https://doi.org/10.1016/0038-1098(90)90542-J
- Roy M.K., Verma H.C. // J. Magn. Magn. Mater. 2004. V. 270. № 1–2. P. 186. https://doi.org/10.1016/j.jmmm.2003.08.017
- Verma H.C. // Indian J. Pure Ap. Phys. 2006. V. 45. P. 851.
- Gavriliuk A.G., Aksenov S.N., Sadykov R.A. и др. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2014. № 12. С. 16. https://doi.org/10.7868/S0207352814120087
- Carignan L.-P., Lacroix C., Ouimet A. et al. // J. Appl. Phys. 2007. V. 102. № 2. P. 023905. https://doi.org/10.1063/1.2756522
- Araujo E., Encinas A., Velasquez-Galvan Y. et al. // Nanoscale. 2015. V. 7. № 4. P. 1485. https://doi.org/10.1039/C4NR04800H
- Burks E.C., Gilbert D.A., Murray P.D. et al. // Nano Lett. 2020. V. 21. № 1. P. 716. https://doi.org/10.1021/acs.nanolett.0c04366
- Panina L.V., Zagorskiy D.L., Shymskaya A. et al. // Phys. Status Solidi. A. 2022. V. 219. № 3. P. 2100538. https://doi.org/10.1002/pssa.202100538
- Younes A., Dilmi N., Khorchef M. et al. // Appl. Surf. Sci. 2018. V. 446. P. 258. https://doi.org/10.1016/j.apsusc.2017.12.160
Arquivos suplementares
