Structural Reorganization of Cell Membrane Models Caused by the Anticancer Antibiotic Doxorubicin

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The molecular mechanisms of the interaction of anticancer antibiotic doxorubicin with lipid cell membrane models have been investigated using grazing incidence X-ray diffraction (XRD) and X-ray reflectivity (XRR). The model systems were monolayers of four types of phospholipids, related to the main components of animal cell membranes. New information on the processes of damage of phospholipid monolayer lattice caused by doxorubicin is obtained. It is established that the action of doxorubicin on anionic phospholipid monolayers is determined by the electrostatic interaction: positively charged doxorubicin molecules are incorporated between negatively charged phospholipid functional groups. In the case of neutral phospholipids the key role belongs to the hydrophobic interaction: doxorubicin molecules are coordinated with phospholipid hydrocarbon tails in disordered regions.

作者简介

N. Novikova

National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia

Email: nn-novikova07@yandex.ru
Россия, Москва

M. Kovalchuk

National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia

Email: nn-novikova07@yandex.ru
Россия, Москва

A. Rogachev

National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia

Email: nn-novikova07@yandex.ru
Россия, Москва

Yu. Malakhova

National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia; MIREA—Rusian Technological University, Moscow, Russia

Email: nn-novikova07@yandex.ru
Россия, Москва; Россия, Москва

Yu. Kotova

Mendeleev University of Chemical Technology, 125047, Moscow, Russia

Email: nn-novikova07@yandex.ru
Россия, Москва

S. Gelperina

Mendeleev University of Chemical Technology, 125047, Moscow, Russia

Email: nn-novikova07@yandex.ru
Россия, Москва

S. Yakunin

National Research Centre “Kurchatov Institute”, 123182, Moscow, Russia

编辑信件的主要联系方式.
Email: nn-novikova07@yandex.ru
Россия, Москва

参考

  1. Brezesinski G., Möhwald H. // Adv. Colloid Int. Sci. 2003. V. 100. P. 563. https://doi.org/10.1016/s0001-8686(02)00071-4
  2. Stefaniu C., Brezesinski G. // Curr. Opin. Colloid Int. Sci. 2014. V. 19. P. 216. https://doi.org/10.1016/j.cocis.2014.01.004
  3. Kaganer V.M., Mohwald H., Dutta P. // Rev. Modern Phys. 1999. V. 71. № 3. P. 779. https://doi.org/10.1103/RevModPhys.71.779
  4. Daillant J., Gibaud A. X-ray and Neutron Reflectivity: Principles and Applications. Berlin: Springer, 2009. 348 p.
  5. Новикова Н.Н., Ковальчук М.В., Юрьева Э.А. и др. // Кристаллография. 2012. Т. 57. № 5. С. 727.
  6. Novikova N., Kovalchuk M., Konovalov O. et al. // BioNanoSci. 2021. V. 10. P. 618. https://doi.org/10.1007/s12668-020-00742-0
  7. Arcamone F., Cassinelli G., Fantini G. et al. // Biotechnol. Bioeng. 2000. V. 67. P. 704. https://doi.org/10.1002/bit.260110607
  8. Thorn C.F., Oshiro C., Marsh S. et al. // Pharmacogenet. Genomics. 2011. V. 21. P. 440. https://doi.org/10.1097/FPC.0b013e32833ffb56
  9. Sritharan S., Sivalingam N.A. // Life Sci. 2021. V. 278. P. 119527. https://doi.org/10.1016/j.lfs.2021.119527
  10. Asensio-L’opez M.C., Soler F., Pascual-Figal D. et al. // PLOS One. 2017. V. 12. P. e0172803. https://doi.org/10.1371/journal.pone.0172803
  11. Alves A.C., Magarkar A., Horta M. et al. // Sci. Rep. 2017. V. 7. P. 6343. https://doi.org/10.1038/s41598-017-06445-z
  12. Peetla C., Bhave R., Vijayaraghavalu S. et al. // Mol. Pharmaceutics. 2010. V. 7. P. 2334. https://doi.org/10.1021/mp100308n
  13. Dadhich R., Kapoor S. // Mol. Cell. Biochem. 2022. V. 477. P. 2507. https://doi.org/10.1007/s11010-022-04459-4
  14. Ramu A., Glaubiger D., Magrath I.T. et al. // Cancer Res. 1983. V. 43. P. 5533.
  15. Speelmans G., Staffhorst R.W., de Kruijff B. et al. // Biochemistry. 1994. V. 33. P. 13761. https://doi.org/10.1021/bi00250a029
  16. Chen L., Alrbyawi H., Poudel I. et al. // AAPS PharmSciTech. 2019. V. 20. P. 99. https://doi.org/10.1208/s12249-019-1316-0
  17. Alves A., Nunes C., Lima J. et al. // Colloids Surf. B. 2017. V. 160. P. 610. https://doi.org/10.1016/j.colsurfb.2017.09.058
  18. Yacoub T.J., Reddy A.S., Szleifer I. // Biophys. J. 2011. V. 101. P. 378. https://doi.org/10.1016/j.bpj.2011.06.015
  19. Hou Y., Li J., Liu X. et al. // Chem. Phys. 2021. V. 541. P. 111036.
  20. Matyszewska D., Moczulska S. // Electrochim. Acta. 2018. V. 280. P. 229. https://doi.org/10.1016/j.electacta.2018.05.119
  21. Gaber M.H., Ghannam M.M., Ali S.A. et al. // Biophys. Chem. 1998. V. 70. P. 223. https://doi.org/10.1016/S0301-4622(97)00125-7
  22. Marsh D. // Biochim. Biophys. Acta. 1996. V. 1286. P. 183. https://doi.org/10.1016/S0304-4157(96)00009-3
  23. Zameshin A., Makhotkin I.A., Yakunin S.N. et al. // J. Appl. Cryst. 2016. V. 49. P. 1300. https://doi.org/10.1107/S160057671601044X
  24. Kondratev O.A., Makhotkin I.A., Yakunin S.N. // Appl. Surf. Sci. 2022. V. 574. P. 151573. https://doi.org/10.1016/j.apsusc.2021.151573
  25. Malakhova Y.N., Korovin A.N., Lapkin D.A. et al. // Soft Matter. 2017. V. 13. P. 7300. https://doi.org/10.1039/c7sm01773a
  26. Windt D.L. // Comput. Phys. IEEE Comput. Sci. Eng. 1998. V. 12. P. 360. https://doi.org/10.1063/1.168689
  27. Xiao-Lin Zh., Sow-Hsin Ch. // Phys. Rev. E. 1993. V. 47. P. 3174. https://doi.org/10.1103/PhysRevE.47.3174
  28. Селеменев В.Ф., Рудакова Л.В., Рудаков О.Б. и др. Фосфолипиды на фоне природных матриц. Воронеж: Научная книга, 2020. 318 с.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (350KB)
3.

下载 (753KB)
4.

下载 (237KB)
5.

下载 (224KB)
6.

下载 (981KB)
7.

下载 (197KB)
8.

下载 (644KB)
9.

下载 (348KB)

版权所有 © Russian Academy of Sciences, 2023