Modulation of azithromycin activity against monospecies and binary biofilms Staphylococcus aureus and Kytococcus schroeteri by norepinephrine

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The effect of norepinephrine as a substance modulator of the activity of the antibiotic azithromycin in relation to monospecies and binary biofilms of representatives of the human microbiota Staphylococcus aureus and Kytococcus schroeteri was studied in various model systems. It has been shown that the hormone at a concentration of 3.55 µM, depending on the cultivation system and incubation time, is capable of both enhancing and weakening the effects of azithromycin at subinhibitory concentrations (0.001 and 4 µg/ml). In the case of rapidly formed biofilms, norepinephrine weakens the inhibitory effect of the antibiotic, while in the presence of the full stage of adhesion, on the contrary, the hormone enhances the inhibitory effect of the antibiotic. No less important is the factor of interaction between two microorganisms in the community, since the presence of K. schroeteri in the community changes the effect of 4 μg/ml azithromycin in combination with norepinephrine on S. aureus . It has been shown that azithromycin and norepinephrine, as well as their combinations, are able to change the expression of resistance genes not only to macrolides (increased expression of the mrx gene by a combination of 4 μg/ml azithromycin and 3.55 μM norepinephrine), but also to fluoroquinolones (decreased expression of the arlR gene and increased mdtK).

Texto integral

Acesso é fechado

Sobre autores

E. Diuvenji

FRC “Fundamentals of biotechnology” of RAS

Email: andrei.gannesen@gmail.com
Rússia, Moscow, 119071

I. Soloviev

FRC “Fundamentals of biotechnology” of RAS

Email: andrei.gannesen@gmail.com
Rússia, Moscow, 119071

M. Sukhacheva

FRC “Fundamentals of biotechnology” of RAS

Email: andrei.gannesen@gmail.com
Rússia, Moscow, 119071

E. Nevolina

FRC “Fundamentals of biotechnology” of RAS

Email: andrei.gannesen@gmail.com
Rússia, Moscow, 119071

M. Ovcharova

FRC “Fundamentals of biotechnology” of RAS

Email: andrei.gannesen@gmail.com
Rússia, Moscow, 119071

N. Loginova

FRC “Fundamentals of biotechnology” of RAS

Email: andrei.gannesen@gmail.com
Rússia, Moscow, 119071

A. Mosolova

FRC “Fundamentals of biotechnology” of RAS

Email: andrei.gannesen@gmail.com
Rússia, Moscow, 119071

S. Mart’yanov

FRC “Fundamentals of biotechnology” of RAS

Email: andrei.gannesen@gmail.com
Rússia, Moscow, 119071

V. Plakunov

FRC “Fundamentals of biotechnology” of RAS

Email: andrei.gannesen@gmail.com
Rússia, Moscow, 119071

A. Gannesen

FRC “Fundamentals of biotechnology” of RAS

Autor responsável pela correspondência
Email: andrei.gannesen@gmail.com
Rússia, Moscow, 119071

Bibliografia

  1. Данилова Н. Д., Гераськина О. В., Дювенжи Е. В., Феофанов А. В., Плакунов В. К., Ганнесен А. В. Ингибирующее действие норадреналина на рост биопленок комменсала кожи человека Kytococcus schroeteri H01 // Микробиология. 2021. Т. 90. С. 618‒622.
  2. Danilova N. D., Geraskina O. V., Diuvenji E. V., Feofanov A. V., Plakunov V. K., Gannesen A. V. Inhibitory effect of norepinephrine on biofilm growth of the human skin commensal Kytococcus schroeteri H01 // Microbiology (Moscow). 2021. V. 90. P. 666‒669.
  3. Дювенжи Е. В., Неволина Е. Д., Мартьянов С. В., Журина М. В., Калмантаева О. В., Макарова М. А., Бочкова Е. А., Фирстова В. В., Плакунов В. К., Ган несен А. В. Бинарные биопленки Staphylococcus aureus 209Р и Kytococcus schroeteri H01: дуалистическая роль китококков и изменения клеточной адгезии в присутствии натрийуретического пептида А-типа // Микробиология. 2022. Т. 91. С. 597‒612.
  4. Diuvenji E. V., Nevol ina E. D., Mart’Yanov S.V., Zhurina M. A., Kalmantaeva O. V., Makarova M. A., Botchkova E. A., Firstova V. V., Plakunov V. K., Gannesen A. V. Binary biofilms of Staphylococcus aureus 209P and Kytococcus schroeteri H01: Dualistic role of kytococci and cell adhesion alterations in the presence of the A-type natriuretic peptide // Microbiology (Moscow). 2022. V. 91. P. 563‒576.
  5. Плакунов В. К., Мартьянов С. В., Тетенева Н. А., Журина М. В. Универсальный метод количественной характеристики роста и метаболической активности микробных биопленок в статических моделях // Микробиология. 2016. Т. 85. №. 4. С. 484‒489.
  6. Plakunov V. K., Mart’yanov S.V., Teteneva N. A., Zhurina M. V. A universal method for quantitative characterization of growth and metabolic activity of microbial biofilms in static models // Microbiology (Moscow). 2016. V. 85. P. 509‒513.
  7. Плакунов В. К., Николаев Ю. А., Ганнесен А. В., Чемаева Д. С., Журина М. В. Новый подход к выявлению защитной роли Esherichia coli в отношении грамположительных бактерий при действии антибиотиков на бинарные биопленки // Микробиология. 2019. Т. 88. С. 288‒296.
  8. Plakunov V. K., Nikolaev Y. A., Gannesen A. V., Chemaeva D. S., Zhurina M. V. A new approach to detection of the protective effect of Escherichia coli on Gram-positive bacteria in binary biofilms in the presence of antibiotics // Microbiology (Moscow). 2019. V. 88. P. 275‒281.
  9. Плакунов В. К., Стрелкова Е. А., Журина М. В. Персистенция и адаптивный мутагенез в биопленках // Микробиология. 2010. Т. 79. С. 447–458.
  10. P lakunov V. K., Strelkova E. A., Zhurina M. V. Persistence and adaptive mutagenesis in biofilms // Microbiology (Moscow). 2010. V. 79. P. 424‒434.
  11. Aepinus C., Adolph E., von Eiff C., Podbielski A., Petzsch M. Kytococcus schroeteri : a probably underdiagnosed pathogen involved in prosthetic valve endocarditis // Wien Klin. Wochenschr. 2008. V. 120. P. 46‒49.
  12. Becker K., Schumann P., Wullenweber J., Schulte M., Weil H. P., Stackebrandt E., Peters G., von Eiff C. Kytococcus schroeteri sp. nov., a novel Gram-positive actinobacterium isolated from a human clinical source // Int. J. Syst. Evol. Microbiol. 2002. V. 52. P. 1609‒1614.
  13. Cambronel M., Tortuel D., Biaggini K., Maillot O., Taupin L., Réhel K., Rince I., Muller C., Hardouin J., Feuilloley M., Rodrigues S., Connil N. Epinephrine affects motility, and increases adhesion, biofilm and virulence of Pseudomonas aeruginosa H103 // Sci. Rep. 2019. V. 9. Art. 20203.
  14. Chow L. K.M., Ghaly T. M., Gillings M. R. A survey of sub-inhibitory concentrations of antibiotics in the environment // J. Environ. Sci. 2021. V. 99. P. 21‒27.
  15. Clabaut M., Suet A., Racine P. J., Tahrioui A., Verdon J., Barreau M., Maillot O., le Tirant A., Karsybayeva M., Kremser C., Redziniak G., Duclairoir-Poc C., Pichon C., Chevalier S., Feuilloley M. G.J. Effect of 17β-estradiol on a human vaginal Lactobacillus crispatus strain // Sci. Rep. 2021. V. 11. Art. 7133.
  16. Coenye T., Peeters E., Nelis H. Biofilm formation by Propionibacterium acnes is associated with increased resistance to antimicrobial agents and increased production of putative virulence factors // Res. Microbiol. 2007. V. 158. P. 386–392.
  17. Diuvenji E. V., Nevolina E. D., Solovyev I. D., Sukhacheva M. V., Mart’yanov S.V., Novikova A. S., Zhurina M. V., Plakunov V. K., Gannesen A. V. A-Type natriuretic peptide alters the impact of azithromycin on planktonic culture and on (monospecies and binary) biofilms of skin bacteria Kytococcus schroeteri and Staphylococcus aureus // Microorganisms. 2023. V. 11. Art. 2965.
  18. Green B. N., Johnson C. D., Egan J. T., Rosenthal M., Griffith E. A., Evans M. W. Methicillin-resistant Staphylococcus aureus : an overview for manual therapists // J. Chiropr. Med. 2012. V. 11. P. 64–76.
  19. Heydorn A., Nielsen A. T., Hentzer M., Sternberg C., Givskov M., Ersbøll B. K., Molin S. Quantification of biofilm structures by the novel computer program COMSTAT // Microbiology (Reading). 2000. V. 146. P. 2395‒2407.
  20. Hosoda K., Shimomura H., Hayashi S., Yokota K., Hirai Y. Steroid hormones as bactericidal agents to Helicobacter pylori // FEMS Microbiol. Lett. 2011. V. 318. P. 68‒75.
  21. Lewis K. Persister cells // Annu. Rev. Microbiol. 2010. V. 64. P. 357‒372.
  22. Louis M., Clamens T., Tahrioui A., Desriac F., Rodrigues S., Rosay T., Harmer N., Diaz S., Barreau M., Racine P. J., Kipnis E., Grandjean T., Vieillard J., Bouffatrigues E., Cornelis P., Chevalier S., Feuilloley M. G.J., Lesouhaitier O . Pseudomonas aeruginosa biofilm dispersion by the human atrial natriuretic peptide // Adv. Sci. 2022. V. 9. Art. 2103262.
  23. Lyte M. Microbial endocrinology in the microbiome-gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior // PLoS Pathog. 2013. V. 9. Art. e1003726.
  24. Mah T. F. Biofilm-specific antibiotic resistance // Future Microbiol. 2012. V. 7. Р. 1061‒1072.
  25. Mart’yanov S.V., Botchkova E. A., Plakunov V. K., Gannesen A. V. The impact of norepinephrine on mono-species and dual-species staphylococcal biofilms // Microorganisms. 2021. V. 9. Art. 820.
  26. N’Diaye A., Mijouin L., Hillion M., Diaz S., Konto-Ghiorghi Y., Percoco G., Chevalier S., Lefeuvre L., Harmer N. J., Lesouhaitier O., Feuilloley M. G. Effect of substance P in Staphylococcus aureus and Staphylococcus epidermidis virulence: implication for skin homeostasis // Front. Microbiol. 2016. V. 7. Art. 188414.
  27. Ovcharova M. A., Geraskina O. V., Danilova N. D., Botchkova E. A., Martyanov S. V., Feofanov A. V., Plakunov V. K., Gannesen A. V. Atrial natriuretic peptide affects skin commensal Staphylococcus epidermidis and Cutibacterium acnes dual-species biofilms // Microorganisms. 2021. V. 9. Art. 552.
  28. Ranieri M. R.M., Whitchurch C. B., Burrows L. L. Mechanisms of biofilm stimulation by subinhibitory concentrations of antimicrobials // Curr. Opin. Microbiol. 2018. V. 45. P. 164‒169.
  29. Sauer K., Stoodley P., Goeres D. M., Hall-Stoodley L., Burmølle M., Stewart P. S., Bjarnsholt T. The biofilm life cycle: expanding the conceptual model of biofilm formation // Nat. Rev. Microbiol. 2022. V. 20. P. 608‒620.
  30. Sharma D., Misba L., Khan A. U. Antibiotics versus biofilm: an emerging battleground in microbial communities // Antimicrob. Resist. Infect. Control. 2019. V. 8. Art. 76.
  31. Schaumburg F., Schmalstieg C., Fiedler B., Brentrup A., Omran H., Becker K. A bumpy road to the diagnosis of a Kytococcus schroeteri shunt infection // J. Med. Microbiol. 2013. V. 62. P. 165–168.
  32. Tong S. Y., Davis J. S., Eichenberger E., Holland T. L., Fowler V. G. Jr. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management // Clin. Microbiol. Rev. 2015. V. 28. P. 603‒661.
  33. Veron W., Lesouhaitier O., Pennanec X., Rehel K., Leroux P., Orange N., Feuilloley M. G. Natriuretic peptides affect Pseudomonas aeruginosa and specifically modify lipopolysaccharide biosynthesis // FEBS J. 2007. V. 274. P. 5852‒5864.
  34. Yousri T., Hawari M., Saad R., Langley S. Kytococcus schroeteri prosthetic valve endocarditis // BMJ Case Rep. 2010. V. 2010. Art. bcr0620103064.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Effect of the combination of azithromycin and norepinephrine on the growth of planktonic cultures (a) and biofilms (b) of K. Schroeteri: 1 - control; 2 - azithromycin 0.001 μg/ml; 3 - azithromycin 4 μg/ml; 4 - a combination of norepinephrine 3.55 μM and azithromycin 0.001 μg/ml; 5 - a combination of norepinephrine 3.55 μM and azithromycin 4 μg/ml. ** - the difference is significant at p < 0.01.

Baixar (89KB)
3. Fig. 2. Effect of the combination of azithromycin and norepinephrine on the growth of planktonic cultures (a) and biofilms (b) of S. aureus: 1 - control; 2 - azithromycin 0.001 μg/ml; 3 - azithromycin 4 μg/ml; 4 - combination of norepinephrine 3.55 μM and azithromycin 0.001 μg/ml; 5 - combination of norepinephrine 3.55 μM and azithromycin 4 μg/ml. * - the difference is significant at p < 0.05; ** - the difference is significant at p < 0.01; *** - the difference is significant at p < 0.005.

Baixar (97KB)
4. Additional materials
Baixar (4MB)
5. Additional materials 1

Baixar (143KB)
6. Additional materials 2

Baixar (133KB)
7. Additional materials 3

Baixar (134KB)
8. Additional materials 4

Baixar (121KB)
9. Additional materials. 5

Baixar (132KB)
10. Additional materials 6

Baixar (79KB)
11. Additional materials 7

Baixar (140KB)
12. Additional materials 8

Baixar (71KB)
13. Additional materials 9

Baixar (146KB)
14. Additional materials 10

Baixar (70KB)
15. Additional materials 11

Baixar (180KB)
16. Additional materials 12

Baixar (26KB)
17. Additional materials 13

Baixar (42KB)
18. Additional materials 14

Baixar (55KB)
19. Additional materials 15

Baixar (23KB)
20. Additional materials 16

Baixar (43KB)
21. Additional materials 17

Baixar (47KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024