Effect of silver nanoclusters on the copper resistance of Achromobacter insolitus LCu2

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Abstract. In this work, the resistance of Achromobacter insolitus LCu2 cells to copper (II) was reduced by adding 1 μM silver nanoclusters to the culture medium: the maximum tolerable concentration decreased by 4 times, the minimum inhibitory concentration – by 25 times. It is assumed that nanoclusters disrupt the functioning of the copper (II) efflux system through binding to the CusC protein, which leads to a partial loss of the ability of bacteria to export excess copper (II) cations from cells.

Texto integral

Acesso é fechado

Sobre autores

G. Burygin

Saratov Scientific Centre of the Russian Academy of Sciences; Saratov State University; Saratov State University of Genetics, Biotechnology, and Engineering named after N.I. Vavilov

Autor responsável pela correspondência
Email: burygingl@gmail.com

Institute of Biochemistry and Physiology of Plants and Microorganisms

Rússia, Saratov, 410049; Saratov, 410012; Saratov, 410012

A. Astankova

Saratov Scientific Centre of the Russian Academy of Sciences; Saratov State University

Email: burygingl@gmail.com

Institute of Biochemistry and Physiology of Plants and Microorganisms

Rússia, Saratov, 410049; Saratov, 410012

D. Chumakov

Saratov Scientific Centre of the Russian Academy of Sciences

Email: burygingl@gmail.com

Institute of Biochemistry and Physiology of Plants and Microorganisms

Rússia, Saratov, 410049

Y. Kryuchkova

Saratov Scientific Centre of the Russian Academy of Sciences; Saratov State University of Genetics, Biotechnology, and Engineering named after N.I. Vavilov

Email: burygingl@gmail.com

Institute of Biochemistry and Physiology of Plants and Microorganisms

Rússia, Saratov, 410049; Saratov, 410012

Bibliografia

  1. Abramson J., Adler J., Dunger J., Evans R., Green T., Pritzel A., Ronneberger O., Willmore L., Ballard A. J., Bambrick J., Bodenstein S. W., Evans D. A., Chia-Chun Hung, O’Neill M., Reiman D., Tunyasuvunakool K., Wu Z., Žemgulytė A., Arvaniti E., Beattie C., Bertolli O., Bridgland A., Cherepanov A., Congreve M., Cowen-Rivers A.I., Cowie A., Figurnov M., Fuchs F. B., Gladman H., Jain R., Khan Y. A., Low C. M.R., Perlin K., Potapenko A., Savy P., Singh S., Stecula A., Thillaisundaram A., Tong C., Yakneen S., Zhong E. D., Zielinski M., Žídek A., Bapst V., Kohli P., Jaderberg M., Hassabis D., Jumper J. M. Accurate structure prediction of biomolecular interactions with AlphaFold 3 // Nature. 2024. V. 630. P. 493–500.
  2. Cervantes C., Gutierrez-Corona F. Copper resistance mechanisms in bacteria and fungi // FEMS Microbiol. Rev. 1994. V. 14. P. 121–137.
  3. Draviana H. T., Fitriannisa I., Khafid M., Krisnawati D. I., Widodo, Lai C. H., Fan Y. J., Kuo T. R. Size and charge effects of metal nanoclusters on antibacterial mechanisms // J. Nanobiotechnol. 2023. V. 21. Art. 428. https://doi.org/10.1186/s12951-023-02208-3
  4. Franke S., Grass G., Rensing C., Nies D. H. Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli // J. Bacteriol. 2003. V. 185. P. 3804–3812.
  5. Hernández-Montes G., Argüello J. M., Valderrama B. Evolution and diversity of periplasmic proteins involved in copper homeostasis in gamma proteobacteria // BMC Microbiol. 2012. V. 12. Art. 249. https://doi.org/10.1186/1471-2180-12-249
  6. Kryuchkova Y. V., Neshko A. A., Gogoleva N. E., Balkin A. S., Safronova V. I., Kargapolova K. Y., Shagimardanova E. I., Gogolev Y. V., Burygin G. L. Genomics and taxonomy of the glyphosate-degrading, copper-tolerant rhizospheric bacterium Achromobacter insolitus LCu2 // Antonie van Leeuwenhoek. 2024. V. 117. Art. 105. https://doi.org/10.1007/s10482-024-01989-3
  7. Magnani D., Solioz M. How bacteria handle copper // Molecular microbiology of heavy metals. Microbiology monographs. V. 6. / Eds. Nies D. H., Silver S. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. P. 259–285. https://doi.org/10.1007/7171_2006_081
  8. Tkachenko O. V., Evseeva N. V., Boikova N. V., Matora L. Y., Burygin G. L., Lobachev Y. V., Shchyogolev S. Y. Improved potato microclonal reproduction with the plant growth-promoting rhizobacteria Azospirillum // Agron. Sustain. Dev. 2015. V. 35. P 1167–1174.
  9. Tumskiy R., Khlebtsov B., Tumskaia A., Evstigneeva S., Antoshkina E., Zakharevich A., Khlebtsov N. G. Enhanced antibacterial activity of novel fluorescent glutathione-capped Ag nanoclusters // Int. J. Mol. Sci. 2023. V. 24. Art. 8306. https://doi.org/10.3390/ijms24098306

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Additional materials
Baixar (65KB)
3. Fig. a – Effect of different concentrations of copper (II) cations in the medium (1) and combined action of 1 μM GSH-AgNCs with copper (II) cations (2) on the viability of the A. insolitus LCu2 strain culture; b – 3D model of the efflux pump – protein complex formed by the CusA trimer, CusB hexamer and CusC trimer of the A. insolitus LCu2 strain; c – horizontal projection of the 3D model of the CusBC protein complex forming a transport pore in the outer cell membrane (copper (II) cations are shown as balls).

Baixar (230KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025