Application of the bacterial C-DAG system to analyze the ability of amyloids to seed protein aggregation in vitro

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The search for new amyloid proteins, as well as the study of their properties, is an actual task, which can be solved by a number of different model systems. One of the most popular is the C-DAG approach. It is based on the analysis of aggregation of the investigated proteins on the surface of Escherichia coli cells. According to the original protocol, it can be used to demonstrate one of the characteristic properties of amyloids: the ability to bind the amyloid-specific dye Congo red and demonstrate apple-green birefringence. In addition, the C-DAG technique allows one to analyze the morphology of aggregates and their resistance to detergents. In this work, we tested using Sup35NM as an example whether aggregates on the surface of bacterial cells can act as inducers of aggregation of the corresponding protein.

全文:

受限制的访问

作者简介

N. Trubitsina

Saint Petersburg State University

Email: s.bondarev@spbu.ru

Department of Genetics and Biotechnology

俄罗斯联邦, 1199034, Saint Petersburg

O. Zemlyanko

Saint Petersburg State University

Email: stanislavspbgu@gmail.com

Department of Genetics and Biotechnology, Laboratory of Amyloid Biology

俄罗斯联邦, 1199034, Saint Petersburg

G. Zhouravleva

Saint Petersburg State University

Email: s.bondarev@spbu.ru

Department of Genetics and Biotechnology, Laboratory of Amyloid Biology

俄罗斯联邦, 1199034, Saint Petersburg

S. Bondarev

Saint Petersburg State University

编辑信件的主要联系方式.
Email: stanislavspbgu@gmail.com

Department of Genetics and Biotechnology, Laboratory of Amyloid Biology

俄罗斯联邦, 1199034, Saint Petersburg

参考

  1. Матиив А. Б., Трубицина Н. П., Матвеенко А. Г., Барбитов Ю. А., Журавлева Г. А., Бондарев С. А. Амилоидные и амилоидоподобные агрегаты: многообразие и кризис термина // Биохимия. 2020. Т. 85. № 9. С. 1213–1239.
  2. Matiiv A. B., Trubitsina N. P., Matveenko A. G., Barbitoff Y. A., Zhouravleva G. A., Bondarev S. A. Amyloid and amyloid-like aggregates: diversity and the term crisis // Biochemistry (Moscow). 2020. V. 85. P. 1011–1034.
  3. Allen K. D., Wegrzyn R. D., Chernova T. A., Müller S., Newnam G. P., Winslett P. A., Wittich K. B., Wilkinson K. D., Chernoff Y. O. Hsp70 chaperones as modulators of prion life cycle: novel effects of Ssa and Ssb on the Saccharomyces cerevisiae prion [PSI+] // Genetics. 2005. V. 169. P. 1227–1242.
  4. Belousov M. V., Bondarev S. A., Kosolapova A. O., Antonets K. S., Sulatskaya A. I., Sulatsky M. I., Zhouravleva G. A., Kuznetsova I. M., Turoverov K. K., Nizhnikov A. A. M60-like metalloprotease domain of the Escherichia coli YghJ protein forms amyloid fibrils. // PLoS One. 2018. V. 13. Art. e0191317.
  5. Chen B., Newnam G. P., Chernoff Y. O. Prion species barrier between the closely related yeast proteins is detected despite coaggregation // Proc. Natl. Acad. Sci. USA. 2007. V. 104. P. 2791–2796.
  6. Chiti F., Dobson C. M. Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade // Annu. Rev. Biochem. 2017. V. 86. P. 27–68.
  7. Glover J. R., Kowal A. S., Schirmer E. C., Patino M. M., Liu J. J., Lindquist S. Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae // Cell. 1997. V. 89. P. 811–819.
  8. Kachkin D. V., Volkov K.V, Sopova J.V, Bobylev A. G., Fedotov S. A., Inge-Vechtomov S.G., Galzitskaya O. V., Chernoff Y. O., Rubel A. A., Aksenova A. Y. Human RAD51 protein forms amyloid-like aggregates in vitro // Int. J. Mol. Sci. 2022. V. 23. Art. 11657.
  9. Kosolapova A. O., Belousov M. V., Sulatskaya A. I., Belousova M. V., Sulatsky M. I., Antonets K. S., Volkov K. V., Lykholay A. N., Shtark O. Y., Vasileva E. N., Zhukov V. A., Ivanova A. N., Zykin P. A., Kuznetsova I. M., Turoverov K. K., Tikhonovich I. A., Nizhnikov A. A. Two novel amyloid proteins, RopA and RopB, from the root nodule bacterium Rhizobium leguminosarum // Biomolecules. 2019. V. 9. Art. 694.
  10. Ryzhova T. A., Sopova J. V., Zadorsky S. P., Siniukova V. A., Sergeeva A. V., Galkina S. A., Nizhnikov A. A., Shenfeld A. A., Volkov K. V., Galkin A. P. Screening for amyloid proteins in the yeast proteome // Curr. Genet. 2018. V. 64. P. 469–478.
  11. Sant’Anna R., Fernández M. R., Batlle C., Navarro S., de Groot N. S., Serpell L., Ventura S. Characterization of amyloid cores in prion domains // Sci. Rep. 2016. V. 6. Art. 34274.
  12. Serio T. R., Lindquist S. L. [PSI+]: an epigenetic modulator of translation termination efficiency // Annu. Rev. Cell Dev. Biol. 1999. V. 15. P. 661–703.
  13. Sivanathan V., Hochschild A. Generating extracellular amyloid aggregates using E. coli cells // Genes Dev. 2012. V. 26. P. 2659–2667.
  14. Sivanathan V., Hochschild A. A bacterial export system for generating extracellular amyloid aggregates // Nat. Protoc. 2013. V. 8. P. 1381–1390.
  15. Sopova J. V., Koshel E. I., Belashova T. A., Zadorsky S. P., Sergeeva A. V., Siniukova V. A., Shenfeld A. A., Velizhanina M. E., Volkov K. V., Nizhnikov A. A., Kachkin D. V., Gaginskaya E. R., Galkin A. P. RNA-binding protein FXR1 is presented in rat brain in amyloid form // Sci. Rep. 2019. V. 9. Art. 18983.
  16. Taglialegna A., Matilla-Cuenca L., Dorado-Morales P., Navarro S., Ventura S., Garnett J. A., Lasa I., Valle J. The biofilm-associated surface protein Esp of Enterococcus faecalis forms amyloid-like fibers // NPJ Biofilms Microbiomes. 2020. V. 6. P. 15. https://doi.org/10.1038/s41522-020-0125-2
  17. Vaneyck J., Segers-Nolten I., Broersen K., Claessens M. M.A.E. Cross-seeding of alpha-synuclein aggregation by amyloid fibrils of food proteins // J. Biol. Chem. 2021. V. 296. Art. 100358.
  18. Willbold D., Strodel B., Schröder G. F., Hoyer W., Heise H. Amyloid-type protein aggregation and prion-like properties of amyloids // Chem. Rev. 2021. V. 121. P. 8285–8307.

补充文件

附件文件
动作
1. JATS XML
2. Figure. Bacterial cells with Sup35NM fibrils accelerate the aggregation of Sup35NM protein in vitro. ∅ ‒ spontaneous aggregation of Sup35NM. “NS” ‒ no significant differences; * ‒ p-value < 0.05 (Wilcoxon test).

下载 (19KB)

版权所有 © Russian Academy of Sciences, 2024