Использование многокомпонентного комплекса деэмульгаторов для повышения эффективности деэмульгирования в нефтяной промышленности
- Авторы: Azizollah K.1
-
Учреждения:
- Gonbad Kavous University
- Выпуск: Том 63, № 3 (2023)
- Страницы: 338-353
- Раздел: Статьи
- URL: https://jdigitaldiagnostics.com/0028-2421/article/view/655612
- DOI: https://doi.org/10.31857/S002824212303005X
- EDN: https://elibrary.ru/JBBQHR
- ID: 655612
Цитировать
Аннотация
Для повышения эффективности деэмульгирования водонефтяных эмульсий разработан оптимизированный многокомпонентный комплекс деэмульгаторов BDTXI, влючающий три активных компонента бис(трифторметилсульфонил)имид 1-бутил-3-метилимидазолия, хлорид додецилтриметиламмония, хлорид триоктилметиламмония), а также ксилол и изопропанол. Между активными компонентами BSTXI наблюдался положительный синергетический эффект. Эффективность деэмульгирования ( DE ) комплекса BDTXI была выше, чем отдельных коммерческих реагентов при любых концентрациях деэмульгаторов, содержании воды и температуре. Изменение температуры и содержания воды в эмульсиях не повлияло на эффективность деэмульгирования BDTXI. Результаты анализа интенсивности обратного рассеяния света, показателя устойчивости Turbiscan®, дзета-потенциала и скорости сдвига эмульсий в присутствии различных деэмульгаторов показали, что комплекс BDTXI может разрушать эмульсии эффективнее и быстрее, чем коммерческие реагенты по отдельности.
Ключевые слова
Об авторах
Khormali Azizollah
Gonbad Kavous University
Автор, ответственный за переписку.
Email: a.khormali@gonbad.ac.ir
49717-99151, Gonbad Kavous, Iran
Список литературы
- Al-Sabagh A.M., Kandile N.G., Noor El-Din M.R Functions of demulsifiers in the petroleum industry // Sep. Sci. Technol. 2011. V. 46. P. 1144-1163. https://doi.org/10.1080/01496395.2010.550595
- Niu Z., Manica R., Li Z., He X., Sjoblom J., Xu, Z. Interfacial properties pertinent to W/O and O/W emulsion systems prepared using polyaromatic compounds // Colloids Surf. A. Physicochem. Eng. Asp. 2019. V. 575. P. 283-291. https://doi.org/10.1016/j.colsurfa.2019.05.011
- Wang D., Yang D., Huang C., Huang Y., Yang D., Zhang H., Liu Q., Tang T., El-Din M.G., Kemppi T., Perdicakis B., Zeng H. Stabilization mechanism and chemical demulsification of water-in-oil and oil-in-water emulsions in petroleum industry: A review // Fuel. 2021. V. 286. Article number 119390. https://doi.org/10.1016/j.fuel.2020.119390
- Wu J., Xu Y., Dabros T., Hamza H. Effect of demulsifier properties on destabilization of water-in-oil emulsion // Energy Fuels. 2003. V. 17. P. 1554-1559. https://doi.org/10.1021/ef030113e
- Atta A.M., Al-Lohedan H.A., Ezzat A.O. Synthesis and application of geminal dicationic ionic liquids and poly (ionic liquids) combined imidazolium and pyridinium cations as demulsifiers for petroleum crude oil saline water emulsions // J. Mol. Liq. 2021. V. 325. Article number 115264. https://doi.org/10.1016/j.molliq.2020.115264
- Kang W., Guo L., Fan H., Meng L., Li Y. Flocculation, coalescence and migration of dispersed phase droplets and oil-water separation in heavy oil emulsion // J. Pet. Sci. Eng. 2012. V. 81. P. 177-181. https://doi.org/10.1016/j.petrol.2011.12.011
- Martyushev D.A. Modeling and forecasting of paraffin settings on an existing extractive fund of oil deposits // Int. J. Eng., Transactions C: Aspect. 2019. V. 32. P. 1704-1709. https://doi.org/10.5829/ije.2019.32.12c.02
- Abdel-Azim A.A., Abdul-Raheim A.-R.M., Kamel R.K., Abdel-Raouf M.E. Demulsifier systems applied to breakdown petroleum sludge // J. Pet. Sci. Eng. 2011. V. 78. P. 364-370. https://doi.org/10.1016/j.petrol.2011.07.008
- Shu G., Bu K., Zhao B., Zheng S. Evaluation of newly developed reverse demulsifiers and cationic polyacrylamide flocculants for efficient treatment of oily produced water // Colloids Surf. A Physicochem. Eng. Asp. 2021. V. 610. Article number 125646. https://doi.org/10.1016/j.colsurfa.2020.125646
- Adeyanju O.A., Oyekunle L.O. Optimization of chemical demulsifications of water in crude oil emulsions // Egypt. J. Pet. 2019. V. 28. P. 349-353. https://doi.org/10.1016/j.ejpe.2019.07.002
- Guzmán-Lucero D., Flores P., Rojo T., Martínez-Palou R. Ionic liquids as demulsifiers of water-in-crude oil emulsions: Study of the microwave effect // Energy Fuels. 2010. V. 24. P. 3610-3615. https://doi.org/10.1021/ef100232f
- Liu M., Cao X.-L., Zhu Y.-W., Gu Z.-Y., Zhang L., Zhang L., Zhao S. The effect of demulsifier on the stability of liquid droplets: A study of micro-force balance // J. Mol. Liq. 2019. V. 275. P. 157-162. https://doi.org/10.1016/j.molliq.2018.11.094
- Ma J., Li X., Zhang X., Sui H., He L., Wang S. A novel oxygen-containing demulsifier for efficient breaking of water-in-oil emulsions // Chem. Eng. J. 2020. V. 385. Article number 123826. https://doi.org/10.1016/j.cej.2019.123826
- Ezzat A.O., Atta A.M., Al-Lohedan H.A., Abdullah M.M.S., Hashem A.I. Synthesis and application of poly(ionic liquid) based on cardanol as demulsifier for heavy crude oil water emulsions // Energy Fuels. 2018. V. 32. P. 214-225. https://doi.org/10.1021/acs.energyfuels.7b02955
- Hazrati N., Miran Beigi A.A., Abdouss M. Demulsification of water in crude oil emulsion using long chain imidazolium ionic liquids and optimization of parameters // Fuel. 2018. V. 229. P. 126-134. https://doi.org/10.1016/j.fuel.2018.05.010
- Rajak V.K., Singh I., Kumar A., Mandal A. Optimization of separation of oil from oil-in-water emulsion by demulsification using different demulsifiers // Petrol. Sci. Tech. 2016. V. 34. P. 1026-1032. https://doi.org/10.1080/10916466.2016.1181654
- Abdulredha M.M., Siti Aslina H., Luqman C.A. Overview on petroleum emulsions, formation, influence and demulsification treatment techniques // Arab. J. Chem. 2020. V. 13. P. 3403-3428. https://doi.org/10.1016/j.arabjc.2018.11.014
- Xu B., Zhou X., Wang C. Synergistic effect of demulsifiers with different structures for crude oil emulsions // Petrol. Sci. Tech. 2016. V. 34. P. 485-490. https://doi.org/10.1080/10916466.2016.1149489
- Roshan N., Ghader S., Rahimpour M.R. Application of response surface methodology for modeling demulsification of crude oil emulsion using a demulsifier // J. Dispers. Sci. Technol. 2018. V. 39. P. 700-710. https://doi.org/10.1080/01932691.2017.1385480
- Javadian S., Sadrpoor S.M. Demulsification of water in oil emulsion by surface modified SiO2 nanoparticle // J. Pet. Sci. Eng. 2020. V. 184. Article number 106547. https://doi.org/10.1016/j.petrol.2019.106547
- Zolfaghari R., Abdullah L.C., Biak D.R.A., Radiman S. Cationic surfactants for demulsification of produced water from alkaline-surfactant-polymer flooding // Energy Fuels. 2019. V. 33. P. 115-126. https://doi.org/10.1021/acs.energyfuels.8b03266
- Feitosa F.X., Alves R.S., de Sant'Ana H.B. Synthesis and application of additives based on cardanol as demulsifier for water-in-oil emulsions // Fuel. 2019. V. 245. P. 21-28. https://doi.org/10.1016/j.fuel.2019.02.081
- Hippmann S., Ahmed S.S., Frohlich P., Bertau M. Demulsification of water/crude oil emulsion using natural rock Alginite // Colloids Surf. A Physicochem. Eng. Asp. 2018. V. 553. P. 71-79. https://doi.org/10.1016/j.colsurfa.2018.05.031
- Adewunmi A.A., Kamal M.S. Demulsification of water-in-oil emulsions using ionic liquids: Effects of counterion and water type // J. Mol. Liq. 2019. V. 279. P. 411-419. https://doi.org/10.1016/j.molliq.2019.02.008
- Piroozian A., Hemmati M., Safari M., Rahimi A., Rahmani O., Aminpour S.M., Pour A.B. A mechanistic understanding of the water-in-heavy oil emulsion viscosity variation: Effect of asphaltene and wax migration // Colloids Surf. A Physicochem. Eng. Asp. 2021. V. 608. Article number 125604. https://doi.org/10.1016/j.colsurfa.2020.125604
- Roshan N., Ghader S., Rahimpour M.R. Population balance equation modeling of crude oil demulsification considering demulsifier: Modification of collision frequency function based on thermodynamic model // Int. J. Eng., Transactions C: Aspect. 2017. V. 30. P. 1434-1442. https://doi.org/10.5829/ije.2017.30.10a.03
- Sun H., He X., Wang Q., Li X. Demulsification of O/W emulsion using a novel polyether-polyquaternium copolymer: Effect of the demulsifier structure and solution environment conditions // Sep. Sci. Technol. 2021. V. 56. P. 811-820. https://doi.org/10.1080/01496395.2020.1728327
- Zaman H., Ali N., Ali Shah A.U.H., Gao X., Zhang S., Hong K., Bilal M. Effect of pH and salinity on stability and dynamic properties of magnetic composite amphiphilic demulsifier molecules at the oil-water interface // J. Mol. Liq. 2019. V. 290. Article number 111186. https://doi.org/10.1016/j.molliq.2019.111186
- Nikkhah M., Tohidian T., Rahimpour M.R., Jahanmiri A. Efficient demulsification of water-in-oil emulsion by a novel nano-titania modified chemical demulsifier // Chem. Eng. Res. Des. 2015. V. 94. P. 164-172. https://doi.org/10.1016/j.cherd.2014.07.021
- Zhang L., He G., Ye D., Zhan N., Guo Y., Fang W. Methacrylated hyperbranched polyglycerol as a high-efficiency demulsifier for oil-in-water emulsions // Energy Fuels. 2016. V. 30. P. 9939-9946. https://doi.org/10.1021/acs.energyfuels.6b01631
- Biniaz P., Farsi M., Rahimpour M.R. Demulsification of water in oil emulsion using ionic liquids: Statistical modeling and optimization // Fuel. 2016. V. 184. P. 325-333. https://doi.org/10.1016/j.fuel.2016.06.093
- Panda S.K., Mohammed M.A., Cadix A., Alaboalirat M., Poix-Davaine C., Duran E. Size exclusion chromatography reveals a key parameter of demulsifiers for enhanced water separation from crude oil emulsions // Fuel. 2019. V. 257. Article number 115881. https://doi.org/10.1016/j.fuel.2019.115881
- Farrokhi F., Jafari Nasr M.R., Rahimpour M.R., Arjmand M., Vaziri S.A. Application of a novel magnetic nano-particle as demulsifier for dewatering in crude oil emulsion // Sep. Sci. Technol. 2018. V. 53. P. 551-558. https://doi.org/10.1080/01496395.2017.1373676
- Teng H., Chen C., Yan S., Ye D., Zhang L. Modified hyperbranched polyethyleneimine as a novel demulsifier for oil-in-water emulsions // Energy Fuels. 2019. V. 33. P. 10108-10114. https://doi.org/10.1021/acs.energyfuels.9b01542
- Silva E.B., Santos D., Alves D.R.M., Barbosa Mi.S., Guimarães R.C.L., Ferreira B.M.S. Guarnieri, R.A., Franceschi E., Dariva C., Santos A.F., and Fortuny M., Demulsification of heavy crude oil emulsions using ionic liquids // Energy Fuels. 2013. V. 27. P. 6311-6315. https://doi.org/10.1021/ef302008d
- Razi M., Rahimpour M.R., Jahanmiri A., Azad F. Effect of a different formulation of demulsifiers on the efficiency of chemical demulsification of heavy crude oil // J. Chem. Eng. Data. 2011. V. 56. P. 2936-2945. https://doi.org/10.1021/je2001733
- Husain A., Al-Harthi, M.A. Chemical treatment of oilfield wastewater and the effect of temperature on treatment efficiency: A review // J. Pet. Sci. Eng. 2023. V. 220. P. 111089. https://doi.org/10.1016/j.petrol.2022.111089
- Mansur C.R.E., Guimarães A.R.S., González G., Lucas E.F. Determination of the onset of asphaltene precipitation by visible ultraviolet spectrometry and spectrofluorimetry // Anal. Lett. 2009. V. 42. P. 2648-2664. https://doi.org/10.1080/00032710903243612
- Moncada J., Schartung D., Stephens N., Oh T.-S., Carrero C.A. Determining the flocculation point of asphaltenes combining ultrasound and electrochemical impedance spectroscopy // Fuel. 2019. V. 241. P. 870-875. https://doi.org/10.1016/j.fuel.2018.12.102
- Celia C., Trapasso E., Cosco D., Paolino D., Fresta M. Turbiscan Lab® Expert analysis of the stability of ethosomes® and ultradeformable liposomes containing a bilayer fluidizing agent // Colloids Surf. B: Biointer. 2009. V. 72. P. 155-160. https://doi.org/10.1016/j.colsurfb.2009.03.007
- Kang W., Yin X., Yang H., Zhao Y., Huang Z., Hou X., Sarsenbekuly B., Zhu Z., Wang P., Zhang X., Geng G., Aidarova S. Demulsification performance, behavior and mechanism of different demulsifiers on the light crude oil emulsions // Colloids Surf. A: Physicochem. Eng. Asp. 2018. V. 545. P. 197-204. https://doi.org/10.1016/j.colsurfa.2018.02.055
- Kang W., Xu B., Wang Y., Li Y., Shan X., An F., Liu J. Stability mechanism of W/O crude oil emulsion stabilized by polymer and surfactant // Colloids Surf. A: Physicochem. Eng. Asp. 2011. V. 384. P. 555-560. https://doi.org/10.1016/j.colsurfa.2011.05.017
- Zhang F., Wang F., Ouyang J., Zhang H. The development and application of a demulsifier used for ASP flooding-produced liquid from the Xing 2 Area of the Daqing oilfield // Petrol. Sci. Tech. 2011. V. 29. P. 69-78. https://doi.org/10.1080/10916460903394177
- Umar A.A., Saaid I.M., Halilu A., Sulaimon A.A., Ahmed A.A., Magnetic polyester bis-MPA dendron nanohybrid demulsifier can effectively break water-in-crude oil emulsions // J. Mater. Res. Technol. 2020. V. 9. P. 13411-13424. https://doi.org/10.1016/j.jmrt.2020.09.074
- Peña A.A., Hirasaki G.J., Miller C.A. Chemically induced destabilization of water-in-crude oil emulsions // Ind. Eng. Chem. Res. 2005. V. 44. P. 1139-1149. https://doi.org/10.1021/ie049666i
- Saputra F.B., Fujita H., Hambali E. Formulation of alternative demulsifiers with palm oil based surfactants for crude oil demulsification // IOP Conf. Ser.: Earth Environ. Sci. 2020. V. 460. P. 012006. https://doi.org/10.1088/1755-1315/460/1/012006
- Pacheco V.F., Spinelli L., Lucas E.F., Mansur C.R. Destabilization of petroleum emulsions: evaluation of the influence of the solvent on additives // Energy Fuels. 2011. V. 25. P. 1659-1666. https://doi.org/10.1021/ef101769e
- Hajivand P., Vaziri A. Optimization of demulsifier formulation for separation of water from crude oil emulsions // Braz. J. Chem. Eng. 2015. V. 32. P. 107-118. https://doi.org/10.1590/0104-6632.20150321s00002755
- Pensini E., Harbottle D., Yang F., Tchoukov P., Li Z., Kailey I., Behles J., Masliyah J., Xu Z. Demulsification mechanism of asphaltene-stabilized water-in-oil emulsions by a polymeric ethylene oxide-propylene oxide demulsifier // Energy Fuels. 2014. V. 28. P. 6760-6771. https://doi.org/10.1021/ef501387k
- Fortuny M., Oliveira C.B., Melo R.L., Nele M., Coutinho R.C., Santos A.F. Effect of salinity, temperature, water content, and pH on the microwave demulsification of crude oil emulsions // Energy Fuels. 2007. V. 21. P. 1358-1364. https://doi.org/10.1021/ef0603885
- Adhikary T., Basak, P. Advances in Oil-Water Separation, Chapter 27, Extraction and separation of oils: the journey from distillation to pervaporation. Elsevier. 2022. P. 511-535. https://doi.org/10.1016/B978-0-323-89978-9.00026-4
Дополнительные файлы
