Use of ytterbium porphyrins complexes in cancer theranostics

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The principles of new cancer theranostics methods based on nanosized Yb-porphyrins complexes have been developed. The obtained data indicate the promise of using synthesized nanoparticles based on Yb-porphyrins complexes for the development of sensitive luminescent diagnostics and theranostics methods for tumors of visually and endoscopically accessible localization. It is shown that laser photothermolysis at a wavelength of 750...800 nm in combination with near-IR luminescent diagnostics (in the spectral range of 900...1100 nm) is a pioneering development in the medical biophotonics. It is predicted that the synthesized structure of the Lexan-polymer matrix + Yb-porphyrin complex + FeOx can be in demand for the purposes of neoplasms magneto-luminescent theranostics. It has been established that tumors luminescent diagnostics in combination with photodynamic therapy in the porphyrin absorption band (wavelength 635 nm at an optical exposure dose of ~300 J/cm2) using the Fluroscan-type pharmaceutical composition can be used for malignant neoplasms of the skin and mucous membranes.

Толық мәтін

Рұқсат жабық

Авторлар туралы

I. Shilov

Fryazino Branch Kotelnikov Institute of Radioengineering and Electronics of RAS

Хат алмасуға жауапты Автор.
Email: laserlab@ms.ire.rssi.ru
Ресей, Vvedenskii Squar., 1, Fryazino, Moscow Region, 141190

V. Rumyantseva

Fryazino Branch Kotelnikov Institute of Radioengineering and Electronics of RAS; MIREA – Russian Technological University

Email: laserlab@ms.ire.rssi.ru
Ресей, Vvedenskii Squar., 1, Fryazino, Moscow Region, 141190; Vernadsky Prosp., 78, Moscow, 119454

A. Gorshkova

Fryazino Branch Kotelnikov Institute of Radioengineering and Electronics of RAS

Email: laserlab@ms.ire.rssi.ru
Ресей, Vvedenskii Squar., 1, Fryazino, Moscow Region, 141190

A. Ivanov

National Medical Research Center of Oncology named after N. N. Blokhin

Email: laserlab@ms.ire.rssi.ru
Ресей, Kashirskoe Shos., 23, Moscow, 115522

Әдебиет тізімі

  1. Cheng S. H., Lee S. H. Chen M.-C. et al. // J. Mater. Chem. 2010. V. 20. № 29. P. 6149. doi.org/10.1039/c0jm00645a
  2. Bardhan R., Chen W., Bartels M. et al. // Nano Lett. 2010. V. 10. P. 4920. doi.org/10.1021/nl102889y
  3. Головин Ю. И., Клячко Н. Л., Мажуга А. Г. и др. // Рос. нанотехнологии. 2018. Т. 13. № 5–6. С. 3.
  4. Maeda H. // J. Pers. Med. 2021. V. 11. № 3. P. 229. doi.org/10.3390/jpm11030229
  5. Ngoune R., Peters A., von Elverfeldt D. et al. // J. Controlled Release. 2016. V. 238. P. 58. doi.org/10.1016/j.jconrel.2016.07.028
  6. Nishiyama N., Kataoka K. // Pharmacol. Ther. 2006. V. 112. P. 630.
  7. Guan Q., Wang M. // Nano Life. 2021. V. 11. № 4. P. 2141004. doi.org/10.1142/S179398442141004X
  8. Кокшаровa Ю. А., Губинc С. П., Таранов И.В и др. // РЭ. 2022. Т. 67. № 2. С. 99. doi.org/10.31857/S0033849422020073
  9. Khlebtsov B., Panfilova E., Khanadeev V. et al. // ACS Nano. 2011. V. 5. № 9. P. 7077. doi.org/10.1021/nn2017974
  10. Ivanov A. V., Rumyantseva V. D., Shchamkhalov K. S., Shilov I. P. // Laser Phys. 2010. V. 20. № 12. P. 2056. doi.org/10.1134/s1054660x10220032
  11. Гайнов В. В., Шайдуллин Р. И., Рябушкин О. А. // Квант. электроника. 2011. Т. 41. № 7. С. 637.
  12. Шилов И. П., Румянцева В. Д., Иванов А. В. и др. // РЭ. 2023. Т. 68. № 4. С. 399. doi.org/10.31857/S0033849423030130
  13. Веснин С. Г. Антенна аппликатор для неинвазивного измерения температуры внутренних тканей биологического объекта. Патент РФ на изобретение № 2306099. Опубл. офиц. бюл. «Изобретение. Полезные модели» № 26 от 20.09.2007 г.
  14. Маркушев В. М., Румянцева В. Д., Шилов И. П., Горшкова А. С. // Журн. радиоэлектроники. 2020. № 11. doi.org/10.30898/1684-1719.2020.11.5
  15. Ивановская Н. П., Шилов И. П., Иванов А. В. и др. // Рос. нанотехнологии. 2019. Т. 14. № 5–6. С. 87. doi.org/10.21517/1992-7223-2019-5-6-87-95
  16. Щелкунова А. Е., Болтухина Е. В., Румянцева В. Д. и др. // Макрогетероциклы. 2019. Т. 12. № 3. doi.org/10.6060/mhc190658s
  17. Шилов И. П., Кочмарев Л. Ю., Новичихин Е. П. // Мед. техника. 2020. № 6. С. 1.
  18. Хлебцов Б. Н., Панфилова Е. В., Ханадеев В. А. и др. // Рос. нанотехнологии. 2011. Т. 6. № 7–8. С. 112.
  19. Хлебцов Б. Н., Хлебцов Н. Г., Терентюк Г. С. и др. Композитные наночастицы для фотодинамической диагностики. Патент РФ на изобретение № 2463074. Опубл. офиц. бюл. «Изобретение. Полезные модели» № 28 от 10.10.2012.
  20. Ivanovskaya N. P., Shilov I. P., Shchamkhalov K. S. et al. // Macroheterocycles. 2015. V. 8. № 1. P. 50. doi.org/10.6060/mhc140715r

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Scheme of synthesis of composite multifunctional nanoparticles based on gold-silver nanocages coated with silicon dioxide and functionalized with ICP.

Жүктеу (60KB)
3. Fig. 2. IR luminescence spectra of the nanocomposite (1) and free aqueous solution of ICP (2).

Жүктеу (76KB)
4. Fig. 3. Biodistribution of the nanocomposite and free aqueous solution of ICP in the organs of mice with grafted Ehrlich carcinoma.

Жүктеу (111KB)
5. Fig. 4. Structural diagram of the nanocomposite LPM + ICP + FeOx (ICP – Yb-PP).

Жүктеу (83KB)
6. Fig. 5. Distribution of composite nanoparticles by size (at a concentration of LPM in the reaction mixture of ~ 100 μg/l).

Жүктеу (66KB)
7. Fig. 6. Emission spectra in the near IR region of the spectrum (λexc ~ 532 nm) of nanocomposites of LPM + Yb-TME GP without a MNP core (1) and with a Fe3O4 core with an average size d ~ 20 (2) and ~ 30 (3) nm.

Жүктеу (85KB)
8. Fig. 7. Histogram of the distribution of luminescence intensity in various organs and tissues of a mouse after intravenous administration of the drug (ex vivo mode, dose 1 mg/kg body weight, accumulation time 12 hours).

Жүктеу (51KB)
9. Fig. 8. Electronic absorption spectra: 1 – Yb-DMDP + ascorbic acid, 2 – Yb-DMDP, 3 – metal-free DMDP.

Жүктеу (79KB)
10. Fig. 9. Average thermogram typical for the 2nd group of laboratory mice (exposure dose 300 J/cm2).

Жүктеу (76KB)
11. Fig. 10. Background thermogram recording of Lewis lung epidermoid carcinoma, exposed to radiation of 500 mW/cm2; 200 s, exposure dose of 100 J/cm2.

Жүктеу (60KB)

© Russian Academy of Sciences, 2024