VYSOKOChASTOTNAYa SPINOVAYa INZhEKTsIYa

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Теоретически рассматривается спиновая инжекция из ферромагнетика в немагнитный материал, обусловленная протеканием переменного электрического тока. Показано, что в немагнитном материале возбуждаются сильно затухающие волны электронной намагниченности. Еслиωτs ≪ 1, где ω — частота, τs — время спиновой релаксации, координатная зависимость намагниченности имеет экспоненциальный характер, а еслиωτs ≫ 1, волновой вектор имеет такую зависимость от частоты, как и в случае обычного скин-эффекта, т. е. имеет место спиновый скин-эффект. Увеличение частоты ведет к снижению эффективности спиновой инжекции. При отключении высокочастотного тока намагниченность электронов внутри немагнитного материала вблизи интерфейса меняется быстрее, чем при отключении постоянного тока. Показано, что при высокой подвижности электронов (например, в GaAs) высокочастотный электрический ток может индуцировать колебания не только на частотеω, но и на кратных частотах.

Sobre autores

N. Bebenin

Институт физики металлов им. М. Н. Михеева Уральского отделения Российской академии наук

Email: bebenin@imp.uran.ru
Екатеринбург, Россия

Bibliografia

  1. Spin Physics in Semiconductor, ed. by M. I. Dyakonov, Second Edition, Springer Int. Publ. AG (2017).
  2. Spin Current, ed. by S. Maekawa, S. O. Valenzuelo, S. Saitoh, and T. Kimura, United Kingdom, Oxford Univ. Press, Oxford (2017).
  3. A. Hirohata, K. Yamada, Y. Nakatani, I.-L. Prejbeanu, B. Di´eny, P. Pirro, and B. Hillebrands, J. Magn. Magn. Mater. 509, 166711 (2020).
  4. A. Fert and H. Jaffr`es, Phys. Rev. B 64, 184420 (2001).
  5. E. I. Rashba, Phys. Rev. B 62, R16267 (2000).
  6. J. Walowski and M. Mu¨nzenberg, J. Appl. Phys. 120, 140901 (2016).
  7. A. I. Nikitchenko and N. A. Pertsev, Phys. Rev. App. 14, 034022 (2020).
  8. E. A. Karashtin and D. A. Tatarskiy, J. Phys.: Condens. Matter 32, 095303 (2020).
  9. A. V. Kobyakov, G. S. Patrin, V. I. Yushkov, Y. G. Shiyan, R. Yu. Rudenko, N. N. Kosyrev, and S. M. Zharkov, Magnetochemistry 8, 130 (2022).
  10. D. Wei, M. Obstbaum, M. Ribow, C. H. Back, and G. Woltersdorf, Nature Commun. 5, 3768 (2014).
  11. Н. Г. Бебенин, Письма в ЖЭТФ 118, 338 (2023).
  12. G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J. van Wees, Phys. Rev. B 62, R4790 (2000).
  13. В. Ю. Ирхин, М. И. Кацнельсон, УФН 164, 705 (1994).
  14. N. A. Viglin, V. V. Ustinov, S. O. Demokritov, A. O. Shorikov, N. G. Bebenin, V. M. Tsvelikhovskaya, T. N. Pavlov, and E. I. Patrakov, Phys. Rev. B 96, 235303 (2017).
  15. Н. А. Виглин, Ю. В. Никулин, В. М. Цвелиховская, Т. Н. Павлов, В. В. Проглядо, ЖЭТФ 134, 866 (2022).
  16. X. Lou, C. Adelmann, S. A. Crooker, E. S. Garlid, J. Zhang, K. S. M. Reddy, S. D. Flexner, C. J. Palmstrøm, and P. A. Crowell, Nature Phys. 3, 197 (2007).
  17. O. M. van’t Erve, A. L. Friedman, E. Cobas, C. H. Li, J. T. Robinson, and B. T. Jonker, Nature Nanotechnol. 7, 737 (2012).
  18. E. Shikoh, K. Ando, K. Kubo, E. Saitoh, T. Shinjo, and M. Shiraish, Phys. Rev. Lett. 110, 127201 (2013).
  19. Y. Fujita, M. Yamada, S. Yamada, T. Kanashima, K. Sawano, and K. Hamaya, Phys. Rev. B 94, 245302 (2016).
  20. J-H. Ku, J. Chang, and H. Kim, Appl. Phys. Lett. 88, 172510 (2006).
  21. H. Idzuchi, Y. Fukuma, and Y. Otani, Physica E 68, 239 (2015).
  22. В. И. Фистуль, Сильно легированные полупроводники, Наука, Москва (1967).
  23. Л. Д. Ландау, Е. М. Лифшиц, Электродинамика сплошных сред, Наука, Москва (1982).
  24. N. G. Bebenin, Sol. St. Electron. 186, 108174 (2021).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025