МОЛЕКУЛЯРНАЯ ОРГАНИЗАЦИЯ СЕКРЕЦИИ МЕДИАТОРА В НЕРВНО-МЫШЕЧНЫХ СИНАПСАХ СОМАТИЧЕСКОЙ МУСКУЛАТУРЫ ДОЖДЕВОГО ЧЕРВЯ LUMBRICUS TERRESTRIS
- Авторы: Нуруллин Л.Ф.1,2, Волков Е.М.2
 - 
							Учреждения: 
							
- Казанский институт биохимии и биофизики – структурное подразделение Федерального государственного бюджетного учреждения науки “Федеральный исследовательский центр “Казанский научный центр Российской академии наук”
 - Казанский государственный медицинский университет
 
 - Выпуск: Том 61, № 3 (2025)
 - Страницы: 191-201
 - Раздел: ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ
 - URL: https://jdigitaldiagnostics.com/0044-4529/article/view/695490
 - DOI: https://doi.org/10.7868/S3034552925030044
 - ID: 695490
 
Цитировать
Полный текст
Аннотация
В соматической мышце дождевого червяLumbricusterrestrisв зоне двигательных нервно-мышечных синапсов методами флуоресцентной микроскопии выявлено присутствие ферментов ацетилхолинэстеразы (АХЭ) и везикулярного АХ-транспортера (ВАХТ), а также α1, α2 и β1 субъединиц ионотропного никотинового АХ-рецепторно-канального комплекса (нАХР). В мышечном гомогенате показано присутствие медиатора ацетилхолина (АХ). Таким образом, в эволюционно-первичной соматической мускулатуре аннелид существует полностью сформированная холинергическая двигательная иннервация, аналогичная той, которая имеется у представителей более высокоорганизованных классов позвоночных животных, включая млекопитающих.
Об авторах
Л. Ф. Нуруллин
Казанский институт биохимии и биофизики – структурное подразделение Федерального государственного бюджетного учреждения науки “Федеральный исследовательский центр “Казанский научный центр Российской академии наук”; Казанский государственный медицинский университет
							Автор, ответственный за переписку.
							Email: lenizn@yandex.ru
				                					                																			                												                								Казань, Россия; Казань, Россия						
Е. М. Волков
Казанский государственный медицинский университет
														Email: euroworm@mail.ru
				                					                																			                												                								Казань, Россия						
Список литературы
- Tansey EM (2006) Henry Dale and the discovery of
 - acetylcholine. Comptes Rendus Biologies 329: 419–425.
 - https://doi.org/10.1016/j.crvi.2006.03.012
 - Brown DA (2019) Acetylcholine and cholinergic receptors.
 - Brain Neurosci Adv 3: 2398212818820506.
 - https://doi.org/10.1177/2398212818820506
 - Zhang Y, Dai F, Chen N, Zhou D, Lee CH, Song C,
 - Zhang Y, Zhang Z (2024) Structural insights into VAChT
 - neurotransmitter recognition and inhibition. Cell Res 34:
 - 665–668.
 - https://doi.org/10.1038/s41422-024-00986-5
 - Sinclair P, Kabbani N (2023) Ionotropic and metabotropic
 - responses by alpha 7 nicotinic acetylcholine receptors.
 - Pharmacol Res 197: 106975.
 - https://doi.org/10.1016/j.phrs.2023.106975
 - Kalamida D, Poulas K, Avramopoulou V, Fostieri E, Lagoumintzis
 - G, Lazaridis K, Sideri A, Zouridakis M, Tzartos SJ
 - (2007) Muscle and neuronal nicotinic acetylcholine receptors.
 - Structure, function and pathogenicity. FEBS J
 - 274: 3799–3845.
 - https://doi.org/10.1111/j.1742-4658.2007.05935.x
 - Lansdell SJ, Collins T, Goodchild J, Millar NS (2012) The
 - Drosophila nicotinic acetylcholine receptor subunits Dα5
 - and Dα7 form functional homomeric and heteromeric
 - ion channels. BMC Neurosci 13: 73.
 - https://doi.org/10.1186/1471-2202-13-73
 - Rosenthal JS, Yuan Q (2021) Constructing and Tuning
 - Excitatory Cholinergic Synapses: The Multifaceted Functions
 - of Nicotinic Acetylcholine Receptors in Drosophila
 - Neural Development and Physiology. Front Cell Neurosci
 - 15: 720560.
 - https://doi.org/10.3389/fncel.2021.720560
 - Jones AK, Davis P, Hodgkin J, Sattelle DB (2007) The nicotinic
 - acetylcholine receptor gene family of the nematode
 - Caenorhabditis elegans: an update on nomenclature. Invert
 - Neurosci 7: 129–131.
 - https://doi.org/10.1007/s10158-007-0049-z
 - Cohen E, Chatzigeorgiou M, Husson SJ, Steuer-Costa W,
 - Gottschalk A, Schafer WR, Treinin M (2014) Caenorhabditis
 - elegans nicotinic acetylcholine receptors are required
 - for nociception. Mol Cell Neurosci 59: 85–96.
 - https://doi.org/10.1016/j.mcn.2014.02.001
 - Albeg A, Smith CJ, Chatzigeorgiou M, Feitelson DG,
 - Hall DH, Schafer WR, Miller DM 3rd, Treinin M (2011) C.
 - elegans multi-dendritic sensory neurons: morphology and
 - function. Mol Cell Neurosci 46: 308–317.
 - https://doi.org/10.1016/j.mcn.2010.10.001
 - Barbagallo B, Prescott HA, Boyle P, Climer J, Francis MM
 - (2010) A dominant mutation in a neuronal acetylcholine
 - receptor subunit leads to motor neuron degeneration in
 - Caenorhabditis elegans. J Neurosci 30: 13932–13942.
 - https://doi.org/10.1523/jneurosci.1515-10.2010
 - Gottschalk A, Almedom RB, Schedletzky T, Anderson SD,
 - Yates JR 3rd, Schafer WR (2005) Identification and characterization
 - of novel nicotinic receptor-associated proteins
 - in Caenorhabditis elegans. EMBO J 24: 2566–2578.
 - https://doi.org/10.1038/sj.emboj.7600741
 - Ahmed NY, Knowles R, Dehorter N (2019) New Insights
 - Into Cholinergic Neuron Diversity. Front Mol Neurosci
 - 12: 204.
 - https://doi.org/10.3389/fnmol.2019.00204
 - He G, Li Y, Deng H, Zuo H (2023) Advances in the study
 - of cholinergic circuits in the central nervous system. Ann
 - Clin Transl Neurol 10: 2179–2191.
 - https://doi.org/10.1002/acn3.51920
 - Legay C (2018) Congenital myasthenic syndromes with
 - acetylcholinesterase deficiency, the pathophysiological
 - mechanisms. Ann N Y Acad Sci 1413: 104–110.
 - https://doi.org/10.1111/nyas.13595
 - Treinin M, Jin Y (2021) Cholinergic transmission in C. elegans:
 - Functions, diversity, and maturation of ACh-activated
 - ion channels. J Neurochem. 158: 1274–1291.
 - https://doi.org/10.1111/jnc.15164
 - ЖУРНАЛ ЭВОЛЮЦИОННОЙ БИОХИМИИ И ФИЗИОЛОГИИ том 61 № 3 2025
 - 200 НУРУЛЛИН, ВОЛКОВ
 - Stocker B, Bochow C, Damrau C, Mathejczyk T, Wolfenberg
 - H, Colomb J, Weber C, Ramesh N, Duch C, Biserova
 - NM, Sigrist S, Pfluger HJ (2018) Structural and Molecular
 - Properties of Insect Type II Motor Axon Terminals.
 - Front Syst Neurosci 12: 5.
 - https://doi.org/10.3389/fnsys.2018.00005
 - Walker RJ, Holden-Dye L, Franks CJ (1993) Physiological
 - and pharmacological studies on annelid and nematode
 - body wall muscle. Comp Biochem Physiol C Comp Pharmacol
 - Toxicol 106: 49–58.
 - https://doi.org/10.1016/0742-8413(93)90253-h
 - Volkov EM, Nurullin LF, Volkov ME, Nikolsky EE, Vyskočil
 - F (2011) Mechanisms of carbacholine and GABA
 - action on resting membrane potential and Na+/K+-ATPase
 - of Lumbricus terrestris body wall muscles. Comp Biochem
 - Physiol A Mol Integr Physiol 158: 520–524.
 - https://doi.org/10.1016/j.cbpa.2010.12.016
 - Volkov EM, Nurullin LF, Nikolsky E, Vyskocil F (2007)
 - Miniature excitatory synaptic ion currents in the earthworm
 - Lumbricus terrestris body wall muscles. Physiol Res
 - 56: 655–658.
 - https://doi.org/10.33549/physiolres.931269
 - Nurullin LF, Volkov EM (2024) Immunofluorescent Identification
 - of Dystrophin, Actin, and Light and Heavy Myosin
 - Chains in Somatic Cells of Earthworm Lumbricus
 - terrestris. Cell Tiss Biol 18: 341–346.
 - https://doi.org/10.1134/S1990519X24700287
 - Nurullin LF, Volkov EM (2024) The Presence of Septin Proteins
 - in the Neuromuscular Junction of Somatic Muscle in
 - the Earthworm Lumbricus terrestris. Biophysics 69: 876–881.
 - https://doi.org/10.1134/S0006350924700969
 - Drewes CD, Pax RA (1974) Neuromuscular physiology of
 - the longitudinal muscle of the earthworm, Lumbricus terrestris.
 - Effects of different physiological salines. J Exp
 - Biol 60: 445–52.
 - https://doi.org/10.1242/jeb.60.2.445
 - Rodriguez-Ithurralde D, Silveira R, Barbeito L, Dajas F
 - (1983) Fasciculin, a powerful anticholinesterase polypeptide
 - from Dendroaspis angusticeps venom. Neurochem
 - Int 5: 267–274.
 - https://doi.org/10.1016/0197-0186(83)90028-1
 - Le Du MH, Marchot P, Bougis PE, Fontecilla-Camps JC
 - (1992) 1.9-A resolution structure of fasciculin 1, an anti-
 - acetylcholinesterase toxin from green mamba snake
 - venom. J Biol Chem 267: 22122–22130.
 - https://doi.org/10.2210/pdb1fas/pdb
 - Duran R, Cervenansky C, Dajas F, Tipton KF (1994) Fasciculin
 - inhibition of acetylcholinesterase is prevented by
 - chemical modification of the enzyme at a peripheral site.
 - Biochim Biophys Acta 1201: 381–388.
 - https://doi.org/10.1016/0304-4165(94)90066-3
 - Kalamida D, Poulas K, Avramopoulou V, Fostieri E, Lagoumintzis
 - G, Lazaridis K, Sideri A, Zouridakis M, Tzartos SJ
 - (2007) Muscle and neuronal nicotinic acetylcholine receptors.
 - Structure, function and pathogenicity. FEBS J
 - 274: 3799–3845.
 - https://doi.org/10.1111/j.1742-4658.2007.05935.x
 - Ho TNT, Abraham N, Lewis RJ (2020) Structure-Function
 - of Neuronal Nicotinic Acetylcholine Receptor Inhibitors
 - Derived From Natural Toxins. Front Neurosci
 - 14: 609005.
 - https://doi.org/10.3389/fnins.2020.609005
 - Sloan MA, Reaves BJ, Maclean MJ, Storey BE, Wolstenholme
 - AJ (2015) Expression of nicotinic acetylcholine receptor
 - subunits from parasitic nematodes in Caenorhabditis
 - elegans. Mol Biochem Parasitol 204: 44–50.
 - https://doi.org/10.1016/j.molbiopara.2015.12.006
 - Holden-Dye L, Joyner M, O'Connor V, Walker RJ (2013)
 - Nicotinic acetylcholine receptors: a comparison of the
 - nAChRs of Caenorhabditis elegans and parasitic nematodes.
 - Parasitol Int 62: 606–615.
 - https://doi.org/10.1016/j.parint.2013.03.004
 - Sellings L, Pereira S, Qian C, Dixon-McDougall T,
 - Nowak C, Zhao B, Tyndale RF, van der Kooy D (2013)
 - Nicotine-motivated behavior in Caenorhabditis elegans
 - requires the nicotinic acetylcholine receptor subunits acr-
 - 5 and acr-15. Eur J Neurosci 37: 743–756.
 - https://doi.org/10.1111/ejn.12099
 - Lansdell SJ, Collins T, Goodchild J, Millar NS (2012) The
 - Drosophila nicotinic acetylcholine receptor subunits Dα5
 - and Dα7 form functional homomeric and heteromeric
 - ion channels. BMC Neurosci 13: 73.
 - https://doi.org/10.1186/1471-2202-13-73
 - Elwary SM, Chavan B, Schallreuter KU (2006) The vesicular
 - acetylcholine transporter is present in melanocytes
 - and keratinocytes in the human epidermis. J Invest Dermatol
 - 126: 1879–1884.
 - https://doi.org/10.1038/sj.jid.5700268
 - Banzai K, Adachi T, Izumi S (2015) Comparative analyses
 - of the cholinergic locus of ChAT and VAChT and its expression
 - in the silkworm Bombyx mori. Comp Biochem
 - Physiol B Biochem Mol Biol 185: 1–9.
 - https://doi.org/10.1016/j.cbpb.2015.03.001
 - Schafer MK, Weihe E, Varoqui H, Eiden LE, Erickson JD
 - (1994) Distribution of the vesicular acetylcholine transporter
 - (VAChT) in the central and peripheral nervous systems
 - of the rat. J Mol Neurosci 5: 1–26.
 - https://doi.org/10.1007/bf02736691
 - Maeda M, Ohba N, Nakagomi S, Suzuki Y, Kiryu-Seo S,
 - Namikawa K, Kondoh W, Tanaka A, Kiyama H (2004) Vesicular
 - acetylcholine transporter can be a morphological
 - marker for the reinnervation to muscle of regenerating
 - motor axons. Neurosci Res 48: 305–314.
 - https://doi.org/10.1016/j.neures.2003.11.008
 - Alfonso A, Grundahl K, Duerr JS, Han HP, Rand JB (1993)
 - The Caenorhabditis elegans unc-17 gene: a putative vesicular
 - acetylcholine transporter. Science 261: 617–619.
 - https://doi.org/10.1126/science.8342028
 - Schwarz J, Bringmann H (2017) Analysis of the NK2
 - homeobox gene ceh-24 reveals sublateral motor neuron
 - control of left-right turning during sleep. Elife 6: e24846.
 - https://doi.org/10.7554/elife.24846
 - Mathews EA, Mullen GP, Hodgkin J, Duerr JS, Rand JB
 - (2012) Genetic interactions between UNC-17/VAChT
 - and a novel transmembrane protein in Caenorhabditis elegans.
 - Genetics 192: 1315–1325.
 - https://doi.org/10.1534/genetics.112.145771
 - Pezzementi L, Chatonnet A (2010) Evolution of cholinesterases
 - in the animal kingdom. Chem Biol Interact 187: 27–33.
 - https://doi.org/10.1016/j.cbi.2010.03.043
 - De Boer D, Nguyen N, Mao J, Moore J, Sorin EJ (2021) A
 - Comprehensive Review of Cholinesterase Modeling and
 - Simulation. Biomolecules 11: 580.
 - https://doi.org/10.3390/biom11040580
 - ЖУРНАЛ ЭВОЛЮЦИОННОЙ БИОХИМИИ И ФИЗИОЛОГИИ том 61 № 3 2025
 - МОЛЕКУЛЯРНАЯ ОРГАНИЗАЦИЯ СЕКРЕЦИИ МЕДИАТОРА В НЕРВНО-МЫШЕЧНЫХ... 201
 - Huchard E, Martinez M, Alout H, Douzery EJ, Lutfalla G,
 - Berthomieu A, Berticat C, Raymond M, Weill M (2006)
 - Acetylcholinesterase genes within the Diptera: takeover
 - and loss in true flies. Proc Biol Sci 273: 2595–2604.
 - https://doi.org/10.1098/rspb.2006.3621
 - Cha DJ, Lee SH (2015) Evolutionary origin and status of
 - two insect acetylcholinesterases and their structural conservation
 - and differentiation. Evol Dev 17: 109–119.
 - https://doi.org/10.1111/ede.12111
 - Grauso M, Culetto E, Combes D, Fedon Y, Toutant JP, Arpagaus
 - M (1998) Existence of four acetylcholinesterase
 - genes in the nematodes Caenorhabditis elegans and Caenorhabditis
 - briggsae. FEBS Lett 424: 279–284.
 - https://doi.org/10.1016/s0014-5793(98)00191-4
 - Combes D, Fedon Y, Toutant JP, Arpagaus M (2001) Acetylcholinesterase
 - genes in the nematode Caenorhabditis
 - elegans. Int Rev Cytol 209: 207–239.
 - https://doi.org/10.1016/s0074-7696(01)09013-1
 - Wu L, Hiebert LS, Klann M, Passamaneck Y, Bastin BR,
 - Schneider SQ, Martindale MQ, Seaver EC, Maslakova SA,
 - Lambert JD (2020) Genes with spiralian-specific protein
 - motifs are expressed in spiralian ciliary bands. Nat Commun
 - 11: 4171.
 - https://doi.org/10.1038/s41467-020-17780-7
 - Budd GE, Jensen S (2017) The origin of the animals and a
 - 'Savannah' hypothesis for early bilaterian evolution. Biol
 - Rev Camb Philos Soc 92: 446–473.
 - https://doi.org/10.1111/brv.12239
 - Burkhardt P, Jekely G (2021) Evolution of synapses and
 - neurotransmitter systems: The divide-and-conquer model
 - for early neural cell-type evolution. Curr Opin Neurobiol
 - 71: 127–138.
 - https://doi.org/10.1016/j.conb.2021.11.002
 - Moroz LL, Romanova DY, Kohn AB (2021) Neural versus
 - alternative integrative systems: molecular insights into
 - origins of neurotransmitters. Philos Trans R Soc Lond B
 - Biol Sci 376: 20190762.
 - https://doi.org/10.1098/rstb.2019.0762
 - Horiuchi Y, Kimura R, Kato N, Fujii T, Seki M, Endo T,
 - Kato T, Kawashima K (2003) Evolutional study on acetylcholine
 - expression. Life Sci. 72: 1745–1756.
 - https://doi.org/10.1016/s0024-3205(02)02478-5
 - Picciotto MR, Higley MJ, Mineur YS (2012) Acetylcholine
 - as a neuromodulator: cholinergic signaling shapes nervous
 - system function and behavior. Neuron 76: 116–129.
 - https://doi.org/10.1016/j.neuron.2012.08.036
 - Brown DA (2019) Acetylcholine and cholinergic receptors.
 - Brain Neurosci Adv 3: 2398212818820506.
 - https://doi.org/10.1177/2398212818820506
 - Izquierdo PG, Calahorro F, Thisainathan T, Atkins JH,
 - Haszczyn J, Lewis CJ, Tattersall JEH, Green AC, Holden-
 - Dye L, O'Connor V (2022) Cholinergic signaling at the
 - body wall neuromuscular junction distally inhibits feeding
 - behavior in Caenorhabditis elegans. J Biol Chem 298: 101466.
 - https://doi.org/10.1016/j.jbc.2021.101466
 - Langeloh H, Wasser H, Richter N, Bicker G, Stern M (2018)
 - Neuromuscular transmitter candidates of a centipede
 - (Lithobius forficatus, Chilopoda). Front Zool 15: 28.
 - https://doi.org/10.1186/s12983-018-0274-9
 - Stern M, Bicker G (2008) Mixed cholinergic/glutamatergic
 - neuromuscular innervation of Onychophora: a combined
 - histochemical/electrophysiological study. Cell Tissue
 - Res 333: 333–338.
 - https://doi.org/10.1007/s00441-008-0638-0
 - Katz B, Miledi R (1977) Transmitter leakage from motor
 - nerve endings. Proc R Soc Lond B Biol Sci 196: 59–72.
 - https://doi.org/10.1098/rspb.1977.0029
 - Egge N, Arneaud SLB, Fonseca RS, Zuurbier KR, McClendon
 - J, Douglas PM (2021) Trauma-induced regulation of
 - VHP-1 modulates the cellular response to mechanical
 - stress. Nat Commun 12: 1484.
 - https://doi.org/10.1038/s41467-021-21611-8
 - Hocking AM, Gibran NS (2010) Mesenchymal stem cells:
 - paracrine signaling and differentiation during cutaneous
 - wound repair. Exp Cell Res 316: 2213–2219.
 
Дополнительные файлы
				
			
						
						
						
					
						
									



