Physicochemical properties and functioning of negative electrodes with lead-based coatings as part of reserve chemical power sources

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Physicochemical properties of lead coating on steel substrates obtained by the galvanic method are studied by atomic force microscopy, scanning electron microscopy, X-ray diffraction phase analysis, voltammetry, and chronopotentiometry. The influence of the surface oxidized layer and through pores in the lead coating on the functioning of this coating as an anode of chemical power sources is studied. It is shown that at positive temperatures the process of anodic oxidation of the steel substrate can contribute to functioning of the anode at discharge. High discharge characteristics of lead-coated anodes without barrier layers on a steel substrate at temperatures from -50 to +50°C are confirmed by tests of pilot batches of reserve power sources of the Pb/HClO4/PbO2 system. Application of POS 63 tin-lead alloy on a copper substrate is shown to be promising for manufacturing anodes of chemical power sources.

全文:

受限制的访问

作者简介

P. Shcheglov

JSC Scientific and Production Association Pribor named after S. S. Golembiovsky

编辑信件的主要联系方式.
Email: godforsaken@inbox.ru
俄罗斯联邦, Moscow, 117587

D. Samsonov

JSC Scientific and Production Association Pribor named after S. S. Golembiovsky

Email: godforsaken@inbox.ru
俄罗斯联邦, Moscow, 117587

A. Pavlenkov

JSC Scientific and Production Association Pribor named after S. S. Golembiovsky

Email: godforsaken@inbox.ru
俄罗斯联邦, Moscow, 117587

T. Kulova

A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: tkulova@mail.ru
俄罗斯联邦, Moscow, 119071

A. Rychagov

A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: tkulova@mail.ru
俄罗斯联邦, Moscow, 119071

A. Skundin

A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: tkulova@mail.ru
俄罗斯联邦, Moscow, 119071

E. Postnova

Yu. A. Osipyan Institute of Solid State Physics, Russian Academy of Sciences

Email: tkulova@mail.ru
俄罗斯联邦, Chernogolovka, Moscow region, 142432

参考

  1. Wong C., Yang E., Yan X.-T., Gu D. // Syst. Sci. Control Eng. 2018. V. 6. № 1. P. 213. https://doi.org/10.1080/21642583.2018.1477634
  2. Handbook of Batteries / Ed.D. Linden and T.B. Reddy. New York, Chicago, etc.: McGraw-Hill, 2002. 1453 p.
  3. Bagotsky V.S., Skundin A.M., Volfkovich Yu.M. Electrochemical Power Sources: Batteries, Fuel Cells, and Supercapacitors. Hoboken, N.J.: John Willey & Sons, 2015. 400 p. https://doi.org/10.1002/9781118942857
  4. Yoon S.-H., Son J.-T., Oh J.-S. // J. Power Sources. 2006. V. 162. № 2. P. 1421. https://doi.org/10.1016/j.jpowsour.2006.07.051
  5. Lead is not dead: Three Ways that Lead Can Prove its Place in the Energy Transition. Wood Mackenzie, UK. Текст: электронный // www.woodmac.com: [сайт]. 2020. 16 июня. URL: woodmac.com/news/opinion/lead-is-not-dead (дата обращения: 29.03.2024).
  6. Riegel B. Lead is not dead – It’s a Critical Foundation for Europe’s low Carbon Future. Hoppecke Batterien GmbH & Co. KG, BRD. Текст: электронный // chargethefutere.org: [сайт]. 2020. 19 окт. URL: https://chargethefutere.org/blog/lead-is-not-dead-its-a-critical-foundation-for-europes-low-carbon-future (дата обращения: 29.03.2024).
  7. The world lead Factbook 2023. International Lead and Zinc Study Group, Portugal. Текст: электронный // www.ilzsg.org: [сайт]. 2023. URL: https://www.ilzsg.org/wp-content/uploads/SitePDFs/1_ILZSG%20World%20Lead%20Factbook%202023.pdf (дата обращения: 29.03.2024).
  8. White J.C., Power W.H., McMurtrie R.L., Pierce Jr.R.T. // Trans. Electrochem. Soc. 1947. V. 91. № 1. P. 73. https://doi.org/10.1149/1.3071768
  9. Brook P.A., Davies A.E. The Tin-Lead Dioxide Reserve Cell // J. Appl. Chem. 1956. V. 6. № 4. P. 174. https://doi.org/10.1002/jctb.5010060409
  10. Schrodt J.P., Otting W.J., Schoegler J.O., Craig D.N. // Trans. Electrochem. Soc. 1946. V. 90. № 1. P. 405–417. https://doi.org/10.1149/1.3071755
  11. Шпекина В.И., Савельева Е.А., Горбачева Е.Ю., Соловьева Н.Д. // Электрохимическая энергетика. 2014. Т. 14. № 4. С. 214. https://doi.org/10.18500/1608-4039-2014-14-4-214-217
  12. Шпекина В.И. Разработка технологии электроосаждения диоксида свинца на различные подложки в ультразвуковом поле. Дис. … канд. техн. наук. Саратов, ФГБОУ ВО “Саратовский государственный технический университет имени Гагарина Ю.А.”. 2016. 136 с.
  13. Щеглов П.А., Самсонов Д.А., Павленков А.Б. и др. // Электрохимия. 2023. Т. 59. № 12. С. 824. https://doi.org/10.31857/S0424857023120125 [Shcheglov P.A., Samsonov D.A., Pavlenkov A.B. et al. // Russ. J. Electrochem. 2023. V. 59. № 12. P. 1062. https://doi.org/10.1134/S1023193523120121]
  14. Щеглов П.А., Самсонов Д.А., Павленков А.Б. и др. // Журн. физ. химии. 2023. Т. 97. № 12. С. 1783. https://doi.org/10.31857/S0044453723120269 [Shcheglov P.A., Samsonov D.A., Pavlenkov A.B. et al. // Russ. J. Phys. Chem. A. 2023. V. 97. № 12. P. 2836. https://doi.org/10.1134/S0036024423120269]
  15. Shcheglov P.A., Samsonov D.A., Pavlenkov A.B. et al. // Chimica Techno Acta. 2024. V. 11. № 1. Article № 202411103. https://doi.org/10.15826/chimtech.2024.11.1.03
  16. Shcheglov P.A., Samsonov D.A., Pavlenkov A.B. et al. // Russ. J. Phys. Chem. A. 2024. V. 98. № 6. P. 1322. https://doi.org/10.1134/S0036024424700328
  17. Горбачев Н.В., Горбачева Е.Ю., Соловьева Н.Д., Краснов В.В. // Электрохимическая энергетика. 2011. Т. 11. № 3. С. 154. https://doi.org/10.18500/1608-4039-2011-11-3-154-157
  18. Горбачев Н.В., Горбачева Е.Ю., Соловьева Н.Д. и др. // Вестн. Саратовского гос. техн. ун-та. 2011. № 4 (49). Вып. 1. С. 83.
  19. Горбачев Н.В. Технология формирования анодных слоев электродов резервных источников тока с хлорной кислотой. Дис. … канд. техн. наук. Саратов: ФГБОУ ВО “Саратовский государственный технический университет имени Гагарина Ю.А.”, 2011. 127 с.
  20. Справочник по электрохимии / Под ред. А.М. Сухотина. Л.: Химия, 1981. 488 с.
  21. Judd M., Brindley K. Soldering in electronics assembly. 2nd ed. Elsevier, 1999. 369 p. https://doi.org/10.1016/B978-0-7506-3545-5.X5000-6
  22. ГОСТ 9.305–84. Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Операции технологических процессов получения покрытий: межгосударственный стандарт: издание официальное. Москва: ИПК Издательство стандартов, 2003. [GOST 9.305–84. Unified system of corrosion and ageing protection. Metal and non-metal inorganic coatings. Technological process operations for coating production: interstate standard: official publication (in Russian). Moscow, 2003.]
  23. ГОСТ 9.302–88. Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Методы контроля: межгосударственный стандарт: издание официальное. Москва: ИПК Изд-во стандартов, 2001. [GOST 9.302–88. Unified system of corrosion and ageing protection. Metal and non-metal inorganic coatings. Control methods: interstate standard: official publication (in Russian). Moscow, 2001.]
  24. Pletcher D., Zhou H., Kear G. et al. // J. Power Sources. 2008. V. 180. № 1. P. 621. https://doi.org/10.1016/j.jpowsour.2008.02.024
  25. Leygraf C., Wallinder I.O., Tidblad J., Graedel T. The Atmospheric Corrosion Chemistry of Lead / Atmospheric Corrosion. 2nd Edition. Hoboken NJ, John Wiley & Sons. 2016. Appendix G.P. 316. https://doi.org/10.1002/9781118762134
  26. Graedel T.E. // J. Electrochem. Soc. 1994. V. 141. № 4. P. 922. https://doi.org/10.1149/1.2054858
  27. Holleman A.F., Wiberg E. Inorganic Chemistry. San Diego, London, etc., Academic Press. 2001. P. 916.
  28. Todd G., Parry E. // Nature. 1964. V. 202. № 4930. P. 386. https://doi.org/10.1038/202386a0
  29. Howie R.A., Moser W. // Nature. 1968. V. 219. № 5152. P. 372. https://doi.org/10.1038/219372a0
  30. Roberts A.C., Stirling J.A.R., Carpenter G.J.C. et al. // Mineral. Mag. 1995. V. 59. № 395. P. 305. https://doi.org/10.1180/minmag.1995.059.395.14
  31. Siidra O.I., Jonsson E., Chukanov N.V. et al. // Eur. J. Mineral. 2018. V. 30. № 2. P. 383. https://doi.org/10.1127/ejm/2018/0030-2723
  32. Olby J.K. // J. Inorg. Nucl. Chem. 1966. V. 28. № 11. P. 2507. https://doi.org/10.1016/0022-1902(66)80373-1
  33. Siidra O., Nekrasova D., Depmeier W. et al. // Acta Cryst. B. 2018. V. B74. № 2. P. 182. https://doi.org/10.1107/S2052520618000768
  34. Кащеев В.Д., Кабанов Б.Н., Лейкис Д.И. // Докл. АН СССР. 1962. Т. 147. № 1. С. 143.
  35. Кабанов Б.Н., Кащеев В.Д. // Докл. АН СССР. 1963. Т. 151. № 4. С. 883.
  36. Séby F., Potin-Gautier M., Giffaut E. et al. // Geochim. Cosmochim. Acta. 2001. V. 65. № 18. P. 3041. https://doi.org/10.1016/S0016-7037(01)00645-7
  37. Gajda T., Sipos P., Gamsjäger H. // Monatsh. Chem. 2009. V. 140. P. 1293. https://doi.org/10.1007/s00706-009-0188-5
  38. Gamsjäger H., Gajda T., Sangster J., Saxena S.K., Voigt W. Chemical Thermodynamics. V. 12: Chemical Thermodynamics of Tin / Ed.J. Perrone. Issy-les-Moulineaux, OECD Nuclear Energy Agency. 2012. 609 p.
  39. ГОСТ Р 58593–2019. Источники тока химические. Термины и определения: Национальный стандарт Российской Федерации: издание официальное. Москва: Стандартинформ, 2019. [GOST R58593–2019. Primary and secondary cells and batteries. Vocabulary: national standard of the Russian Federation: official publication (in Russian). Moscow, 2019.]
  40. Голембиовский В.С., Есиев Р.У., Колпащиков Ю.В. и др. Энергосодержащий источник тока, Патент RU2487313 (Россия). Заявл. 03.02.2012, опубл. 10.07.2013. [Golembiovskij V.S., Esiev R.U., Kolpashchikov Yu.V. et al. Energy-Containing Power Source, Patent RU2487313 (Russia), Applied 03.02.2012, published 10.07.2013]
  41. Набоков Ю.А., Корченков И.А., Трофимов П.В., Павленков А.Б., Самсонов Д.А., Щеглов П.А. Энергосодержащий источник тока, Патент RU2822542 (Россия). Заявл. 18.07.2023, опубл. 09.07.2024. [Nabokov Yu.A., Korchenkov I.A., Trofimov P.V., Pavlenkov A.B., Samsonov D.A., Shcheglov P.A. Energy-containing power source, Patent RU2822542 (Russia). Applied 18.07.2023, published 09.07.2024.]

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Typical surface profile of a lead coating on a steel substrate.

下载 (335KB)
3. Fig. 2. Images of the lead coating surface obtained by SEM at a magnification of 5×103 (a) and 5×104 (b).

下载 (928KB)
4. Fig. 3. Diffraction pattern of lead coating on steel substrate compared with literature data: a – diffraction pattern in a wide range of scanning angles; b – standard data for metallic lead (ICDD 96-153-1229); c – fragment of diffraction pattern on an enlarged scale; d, d, e – literature data for possible corrosion products: lead oxides and oxohydroxide (d); lead carbonate and oxocarbonates (d); lead hydroxycarbonate and oxohydroxycarbonates (e); 1 – metallic lead phase; 2 – impurity phases; 3 – litharge α-PbO2 (ICDD 5-0561); 4 – massikot β-PbO2 (ICDD 38-1477); 5 – Pb6O4(OH)4 [27–29]; 6 – cerussite PbCO3 (ICDD 47-1734); 7 – shannonite Pb2O(CO3) [30]; 8 – Pb3O2CO3 (ICDD 17-0731); 9 – hrutfonteinite Pb3O(CO3)2 [31]; 10 – hydrocerussite Pb3(OH)2(CO3)2 [32, 33]; 11 – plumbonacrite Pb5O(OH)2(CO3)3 [32]; 12 – somersetite Pb8O(OH)4(CO3)5 [32]; Irel – relative intensity; Θ – gliding angle.

下载 (761KB)
5. Fig. 4. External appearance of the surface of the lead coating on a steel substrate with through pores that appeared after treatment with a reagent solution in the form of dark blue spots.

下载 (841KB)
6. Fig. 5. Chronopotentiometric curves for anodes with lead coatings (1, 2, 3) in comparison with compact lead (4). Test temperature: +25°C (1), –50°C (2, 3, 4). Curve 3 was obtained with a repeated discharge cycle; E is potential; τ is time.

下载 (185KB)
7. Fig. 6. Potentiodynamic curves of samples made of 08kp steel tape in normal (a) and semi-logarithmic (b) coordinates at a temperature of +25°C (1) and –50°C (2). Designation: i – anode current density.

下载 (298KB)
8. Fig. 7. Chronopotentiometric discharge curves of Fe/HClO4/PbO2 (1, 2), Pb/HClO4/PbO2 (3, 4) and (Sn, Pb)/HClO4/PbO2 (5, 6) electrochemical cells. Test temperature: +50°C (1, 3, 5), +25°C (2), –50°C (4, 6); U – voltage.

下载 (242KB)
9. Fig. 8. Chronopotentiometric curves for anodes with tin-lead alloy coatings at temperatures of +25°C (1) and –50°C (2).

下载 (174KB)
10. Fig. 9. Discharge curves of pilot batches of current sources of the Pb/HClO4/PbO2 system at temperatures of +50 (1), +25 (2) and –50°C (3). The inset shows the initial sections of the discharge curves on an enlarged scale along the time axis.

下载 (165KB)

版权所有 © Russian Academy of Sciences, 2025