Coordination environment strategy for molybdenum(V) porphyrin complexes to improve their sensory parameters

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

Molybdenum(V) porphyrin complexes, O=Mo(X)P (P is a substituted porphine, X is a single-charged anionic ligand), show affinity to practically significant organic bases, give an accessible for registration spectral response in the UV-visible region and therefore have prospects as active components of sensor devices. In order to achieve high values of the sensory parameters, the present work analyzes the influence of the composition of the O=Mo(X)P coordination sphere on them by varying the axial ligand X and the substituent in the composition of the equatorial macrocyclic ligand. For this purpose, a complete kinetic description of the reaction with pyridine (Py), a classical example of highly volatile organic compounds (VOCs), proceeding as two consecutive two-way reactions, identification and characterization of the intermediate and final products by UV-visible, 1H NMR, IR spectroscopy and mass spectrometry, and sensing activity parameters — time and numerical value of the spectral response to the presence of Py and the lower limit of determination of the latter is presented using oxo(5,10,15,20-tetraphenylporphinato)(ethoxy)molybdenum(V) (O=Mo(OEt)TРР) as an example. Using similar data for O=Mo(OH)TPP, O=Mo(OEt)TTP and O=Mo(OEt)TtBuPP (TTP and TtBuPP are dianions of tetra-4-methyl- and tetra-4-tert-butyl-substituted TPP, respectively), it is shown that the directed formation of the coordination sphere is a means for fine-tuning the sensory properties and that the complex O=Mo(OEt)TPP is the most effective in this capacity.

Толық мәтін

Рұқсат жабық

Авторлар туралы

E. Motorina

G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: evm@isc-ras.ru
Ресей, Ivanovo, 153045

T. Lomova

G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences

Email: evm@isc-ras.ru
Ресей, Ivanovo, 153045

Әдебиет тізімі

  1. Paolesse R., Nardis S., Monti D. et al. // Chem. Rev. 2017. V. 117. P. 2517. https://doi.org/10.1021/acs.chemrev.6b00361
  2. Taihong Liu, Lüjie Yang, Wan Feng et al. // ACS Appl. Mater. Interfaces. 2020. V. 12. Р. 11084. https://doi.org/10.1021/acsami.0c00568
  3. Evyapan M., Dunbar A.D.F. // Sens. Actuators, B. 2015. V. 206. Р. 74. https://doi.org/10.1016/j.snb.2014.09.023
  4. Yuanyuan Lv, Yani Zhang, Yanglong Du et al. // Sensors. 2013. V. 13. Р. 15758. https://doi.org/10.3390/s131115758
  5. Lvova L., Di Natale C., Paolesse R. // Sens. Actuators, B. 2013. V. 179. P. 21. https://doi.org/10.1016/j.snb.2012.10.014
  6. Shahrokhian S., Taghani A., Hamzehloei A. et al. // Talanta. 2004. V. 63. P. 371. https://doi.org/10.1016/j.talanta.2003.11.007
  7. Baybars Köksoy, Meryem Aygün, Aylin Çapkin et al. // J. Porphyrins Phthalocyanines. 2018. V. 22. P. 121. https://doi.org/10.1142/S1088424618500153
  8. Li Tian, Binbin Wang, Ruizhan Chen et al. // Microchim. Acta. 2015. V. 182. P. 687. https://doi.org/10.1007/s00604-014-1374-7
  9. Paolesse R., Di Natale C., Burgio M. et al. // Sens. Actuators, B. 2003. V. 95. P. 400. https://doi.org/10.1016/S0925-4005(03)00534-3
  10. C. Henrique A. Esteves, Bernardo A. Iglesias, Takuji Ogawa et al. // ACS Omega. 2018. V. 3. P. 6476. https://doi.org/10.1021/acsomega.8b00403
  11. Paolesse R., Monti D., Nardis S., Di Natale C. Porphyrin-Based Chemical Sensors. / Eds. Kadish K.M., Smith K.M., Guilard R. Singapore: Worid Scientific, 2011. https://doi.org/10.1142/7878-vol12
  12. Malinski T. Porphyrin-based Electrochemical Sensors. / Eds. Kadish K.M., Smith K.M., Guilard R. New York: Academic Press, 1999. https://www.sciencedirect.com/book/9780080923901/the-porphyrin-handbook
  13. Hisanobu Ogoshi, Tadashi Mizutani, Takashi Hayashi, Yasuhisa Kuroda. Porphyrins and metalloporphyrins as Receptor Models in Molecular Recognition. / Eds. Kadish K.M., Smith K.M., Guilard R. New York: Academic Press, 1999. https://www.sciencedirect.com/book/9780080923901/the-porphyrin-handbook
  14. Басова Т.В., Белых Д.В., Вашурин А.С. и др. // Журн. структур. химии. 2023. Т. 64. № 5. С. 1. https://doi.org/10.26902/JSC_id110058
  15. Типугина М.Ю., Ломова Т.Н., Моторина Е.В. // Коорд. химия. 2005. Т. 31. № 5. С. 380.
  16. Моторина Е.В., Климова И.А., Бичан Н.Г., Ломова Т.Н. // Журн. неорган. химии. 2022. Т. 67. № 12. С. 1779. https://doi.org/10.31857/S0044457X22600712
  17. Lomova T.N., Motorina E.V., Bichan N.G. // J. Porphyrins Phthalocyanines. 2022. V. 26. Р. 485. https://doi.org/10.1142/S1088424622500365
  18. Lomova T.N. // Appl. Organomet. Chem. 2021. V. 35. e6254. https://doi.org/10.1002/aoc.6254
  19. Spadavecchia J., Ciccerella G., Rella R. // Sens. Actuators. 2005. V. 106. P. 212. https://doi.org/10.1016/j.snb.2004.08.026
  20. Motorina E.V., Lomova T.N., Klyuev M.V. // Mendeleev Commun. 2018. V. 28. № 4. P. 426. https://doi.org/10.1016/j.mencom.2018.07.029
  21. Lomova T.N., Motorina E.V., Mozhzhukhina E.G., Gruzdev M.S. // J. Porphyrins Phthalocyanines. 2020. V. 24. P. 1224. https://doi.org/10.1142/S1088424620500406
  22. Matsuda Y., Murakami Y. // Coord. Chem. Rev. 1988. V. 92. P. 157.
  23. Gubarev Y.A., Lebedeva N.Sh., Golubev S.N. et al. // Macroheterocycles. 2013. V. 6. P. 106. https://doi.org/10.6060/mhc120986g
  24. Medforth C.J. // NMR spectroscopy of diamagnetic porphyrinsin. / Kadish K.M., Smith K.M., Guilard R. New York: Acad. Press, 2000.
  25. Goutam N., Sabyasachi S. // J. Porphyrins Phthalocyanines. 2014. V. 18. P. 282. https://doi.org/10.1142/S1088424613501277
  26. Fulmer G.R., Miller A.J.M., Sherden N.H. et al. // Organometallics. 2010. V. 29. P. 2176. https://doi.org/10.1021/om100106e
  27. Ledon H., Mentzen B. // Inorg. Chim. Acta. 1978. V. 31. P. L393.
  28. Ledon H., Bonnet M., Brigandat Y., Varescon F. // Inorg. Chem.1980. V. 19. № 11. P. 3488. https://doi.org/10.1021/ic50213a055
  29. Walker F.A. // J. Am. Chem. Soc. 1973. V. 95. P. 1150.
  30. Smirnov V.V., Woller E.K., Di Magno S.G. // Inorg. Chem. 1998. V. 37. № 19. P. 4971. https://doi.org/10.1021/ic980156o
  31. Зайцева С.В., Зданович С.А., Койфман О.И. // Журн. неорган. химии. 2015. Т. 60. № 6. С. 836. https://doi.org/10.7868/S0044457X15060185
  32. Зайцева С.В., Зданович С.А., Койфман О.И. // Коорд. химия. 2010. Т. 36. № 5. С. 323.
  33. Yamaji M., Hama Y., Hoshino M. // Chem. Phys. Lett. 1990. V. 165. P. 309. https://doi.org/10.1016/0009-2614(90)87194-v

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Scheme 1. Scheme of simple reactions during the interaction of O=Mo(OEt)TPP with Py.

Жүктеу (22KB)
3. Fig. 1. Structural formulas of porphyrin complexes of molybdenum(V).

Жүктеу (45KB)
4. Fig. 2. 1H NMR spectra in CDCl3 of O=Mo(OEt)TPP (a) and the product of its interaction with Py[O=Mo(Py)2TPP]+OEt− (b).

Жүктеу (28KB)
5. Fig. 3. Mass spectrum of O=Mo(OEt)TPP, DHB matrix.

Жүктеу (12KB)
6. Fig. 4. Electronic absorption spectrum of O=Mo(OEt)TPP (CMP=1.08 × 10−5 mol/L) in toluene with various base additives: a — CPy = 0 (1), 1.59 × 10–2 mol/L (2); b — CPy = 1.59 × 10–2 (2), 11.43 mol/L (3). The remaining lines correspond to intermediate concentrations of the nitrogenous base.

Жүктеу (25KB)
7. Fig. 5. Spectrophotometric titration curves of O=Mo(OEt)TPP (II) with Py in toluene at 298 K: a — 1.98 × 10−5–1.59 × 10−2 mol/L; b — 1.59 × 10−2–11.43 mol/L; c — the corresponding (1, 2) dependences lg((Ap – Ao)/(A∞ – Aр))–lgCL [mol/l], R2 = 0.9840 (1), R2 = 0.9880 (2), tgα = 0.99 (1) and 1.15 (2).

Жүктеу (24KB)
8. Fig. 6. IR spectra of O=Mo(OEt)TPP (a) and the product of its reaction with Py [O=Mo(Py)2TPP]+OEt− (b) in KBr tablets.

Жүктеу (23KB)
9. Fig. 7. Mass spectrum of [O=Mo(Py)2TPP]+OEt−, DHB matrix.

Жүктеу (17KB)

© Russian Academy of Sciences, 2025