Mixed Ligand Zinc Complexation with Ornithine and Histidine in Aqueous Solution
- Autores: Nikitina M.G.1, Gruzdev M.S.1, Pyreu D.F.2
 - 
							Afiliações: 
							
- Krestov Institute of Solution Chemistry, Russian Academy of Sciences
 - Ivanovo State University
 
 - Edição: Volume 68, Nº 3 (2023)
 - Páginas: 363-372
 - Seção: ФИЗИКОХИМИЯ РАСТВОРОВ
 - URL: https://jdigitaldiagnostics.com/0044-457X/article/view/665290
 - DOI: https://doi.org/10.31857/S0044457X22700167
 - EDN: https://elibrary.ru/JFWMYN
 - ID: 665290
 
Citar
Texto integral
Resumo
The formation of mixed-ligand complexes of various compositions in the Zn–L-histidine (His)–L-ornithine (Orn) system has been studied by pH-metry, calorimetry, and NMR spectroscopy. The thermodynamic parameters (log K, ΔrG0 ΔrH, ΔrS) of the reactions of their formation at 298.15 K and ionic strength I = 0.5 (KNO3) have been calculated. Based on the comparative analysis of thermodynamic parameters, the most probable method for the coordination of amino acid residues in mixed complexes has been proposed.
Palavras-chave
Sobre autores
M. Nikitina
Krestov Institute of Solution Chemistry, Russian Academy of Sciences
														Email: pyreu@mail.ru
				                					                																			                												                								153025, Ivanovo, Russia						
M. Gruzdev
Krestov Institute of Solution Chemistry, Russian Academy of Sciences
														Email: pyreu@mail.ru
				                					                																			                												                								153025, Ivanovo, Russia						
D. Pyreu
Ivanovo State University
							Autor responsável pela correspondência
							Email: pyreu@mail.ru
				                					                																			                												                								153025, Ivanovo, Russia						
Bibliografia
- Yamauchi O., Odani A. // J. Chem. Soc., Dalton Trans. 2002. P. 3411. https://doi.org/10.1039/B202385G
 - Yamauchi O., Odani A. // Inorg. Chim. Acta. 1985. V. 100. P. 165. https://doi.org/10.1016/S0020-1693(00)88304-8
 - Chaga G.S. // J. Biochem. Biophys. Methods. 2001. V. 49. P. 313.
 - Gaberc-Porekar V., Menart V. // J. Biochem. Biophys. Methods. 2001. V. 49. P. 335.
 - Yang P., Zheng W., Hua Z. // Inorg. Chem. 2000. V. 39. № 24. P. 5454. https://doi.org/10.1021/ic0000146
 - Raman N., Sakthivel A., Raja J.D. et al. // Russ. J. Inorg. Chem. 2008. V. 53. P. 213. https://doi.org/10.1134/S0036023608020113
 - Demidov V.N., Kas’yanenko N.A., Antonov V.S. et al. // Russ. J. Gen. Chem. 2012. V. 82. P. 602. https://doi.org/10.1134/S1070363212030401
 - Nair M.S., Arasu P.T., Sutha S.G. et al. // J. Indian Chem. Soc. 1998. V. 37A. P. 1084. http://nopr.niscair.res.in/handle/123456789/40379
 - Nair M.S., Pillai M.S., Ramalingam S.K. // J. Chem. Soc., Dalton Trans. 1986. P. 1. https://doi.org/10.1039/DT9860000001
 - Никитина М.Г., Пырэу Д.Ф. // Журн. неорган. химии. 2021. Т. 66. № 10. С. 1482. https://doi.org/10.1134/S0036023621100120
 - Бородин В.А., Васильев В.П., Козловский Е.В. Математические задачи химической термодинамики. Новосибирск: Наука, 1985. С. 219.
 - Pettit L.D. // Pure Appl. Chem. 1984. V. 56. P. 247. https://doi.org/10.1351/pac198456020247
 - Yamauchi O., Odani A. // Pure Appl. Chem. 1996. V. 68. P. 469. https://doi.org/10.1351/pac199668020469
 - Farkas E., Gergely A., Kas E. // J. Inorg. Nucl. Chem. 1981. V. 43. P. 1591. https://doi.org/10.1016/0022-1902(81)80343-0
 - Sovago I., Kiss T., Gergely A. // J. Chem. Soc., Dalton Trans. 1978. P. 964.
 - Васильев В.П. Термодинамические свойства растворов электролитов. М.: Высш. школа, 1982. С. 201.
 - Гаравин В.А. // Дис. … канд. хим. наук. Иваново: ИХТИ, 1983.
 - Gergely A., Farkas E., Nagypál I. et al. // J. Inorg. Nucl. Chem. 1978. V. 40. P. 1709. https://doi.org/10.1016/0022-1902(78)80366-2
 - Amico P., Arena G., Daniele P. et al. // Inorg. Chem. 1981. V. 20. P. 772. https://doi.org/10.1021/ic50217a027
 - Pyreu D., Alekseeva E., Gridchin S. // Thermochim. Acta. 2019. V. 680. P. 178335. https://doi.org/10.1016/j.tca.2019.178335
 - Couves L.D., Hague D.N., Moreton A.D. // J. Chem. Soc., Dalton Trans. 1992. P. 217. https://doi.org/10.1039/DT9920000217
 - Kiss T., Sovago I., Gergely A. // Pure Appl. Chem. 1991. V. 63. P. 597.
 - Sjoberg S. // Pure Appl. Chem. 1997. V. 69. P. 1549.
 - Zhou L., Li S., Su Y. et al. // J. Phys. Chem. B. 2013. V. 117. P. 8954. https://doi.org/10.1021/jp4041937
 - Dalosto S.D., Calvo R., Pizarro J.L., Arriortua M.I. // J. Phys. Chem. A. 2001. V. 105. P. 1074. https://doi.org/10.1021/jp003167n
 - Ferrer P., Jiménez-Villacorta F., Rubio-Zuazo J. et al. // J. Phys. Chem. B. 2014. V. 118. P. 2842. https://doi.org/10.1021/jp411655e
 - Kistenmacher T.J. // Acta Crystallogr., Sect. B. 1972. V. 28. P. 1302. https://doi.org/10.1107/S0567740872004133
 - Kretsinger R.H., Cotton F.A., Bryan R.F. // Acta Crystallogr. 1963. V. 16. P. 651 https://doi.org/10.1107/S0365110X63001705
 - Harding M.M., Cole S.J. // Acta Crystallogr. 1963. V. 16. P. 643. https://doi.org/10.1107/S0365110X63001699
 - Bottari E., Festa M. // J. Coord. Chem. 1990. V. 22. P. 237. https://doi.org/10.1080/00958979009408220
 - Powell K., Brown P., Byrne R. et al. // Pure Appl. Chem. 2013. V. 85. P. 2249.
 
Arquivos suplementares
				
			
						
						
					
						
						
									








