Роль фосфолипидных производных циклодекстринов в формировании стабильных липидных наночастиц для доставки лекарственных препаратов
- Авторы: Белицкая Е.Д.1,2, Олейников В.А.1,3, Залыгин А.В.1,4
-
Учреждения:
- ФГБУН ГНЦ “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН
- ФГАОУ ВО “Московский физико-технический институт (национальный исследовательский университет)”
- Национальный исследовательский ядерный университет “МИФИ”
- ФГБУН “Физический институт им. П.Н. Лебедева” РАН, Троицкое обособленное подразделение, включающее “Троицкий Технопарк ФИАН”
- Выпуск: Том 51, № 3 (2025)
- Страницы: 375-387
- Раздел: ОБЗОРНАЯ СТАТЬЯ
- URL: https://jdigitaldiagnostics.com/0132-3423/article/view/686887
- DOI: https://doi.org/10.31857/S0132342325030013
- EDN: https://elibrary.ru/KPZLST
- ID: 686887
Цитировать
Аннотация
Рассмотрены физические методы исследования структурных характеристик комплексов включения супрамеров фосфолипидных производных циклодекстринов. Эта модификация придает циклодекстрину дополнительные структурные особенности, повышая его растворимость и стабильность в водных средах. Подобные новые соединения могут самособираться в водной среде в различные типы супрамолекулярных нанокомплексов. Биомедицинские применения предусмотрены для наноинкапсулирования молекул лекарственных средств в гидрофобных межцепочечных объемах и нанополостях амфифильных циклодекстринов (служащих в качестве носителей лекарственных средств или фармацевтических вспомогательных веществ), противоопухолевой фототерапии, доставки генов, а также для защиты нестабильных активных ингредиентов путем комплексообразования включений в наноструктурированных средах. Основное внимание уделяется изучению морфологии наночастиц, т.к. эффективные системы доставки должны соответствовать определенным требованиям. Классические физические методы не могут дать подробной информации о свойствах потенциальных структур для применения в биомедицине. Для этого необходим поиск новых неинвазивных подходов.
Полный текст

Об авторах
Е. Д. Белицкая
ФГБУН ГНЦ “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН; ФГАОУ ВО “Московский физико-технический институт (национальный исследовательский университет)”
Автор, ответственный за переписку.
Email: belitskayakatya@yandex.ru
Россия, 117997 Москва, улица Миклухо-Маклая, 16/10; 141701 Долгопрудный, Институтский пер., 9
В. А. Олейников
ФГБУН ГНЦ “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН; Национальный исследовательский ядерный университет “МИФИ”
Email: belitskayakatya@yandex.ru
Россия, 117997 Москва, улица Миклухо-Маклая, 16/10; 115409 Москва, Каширское шоссе, 31
А. В. Залыгин
ФГБУН ГНЦ “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН; ФГБУН “Физический институт им. П.Н. Лебедева” РАН, Троицкое обособленное подразделение, включающее “Троицкий Технопарк ФИАН”
Email: belitskayakatya@yandex.ru
Россия, 117997 Москва, улица Миклухо-Маклая, 16/10; 108840 Москва, Троицк, ул. Физическая, 11
Список литературы
- Spencer D.S., Puranik A.S., Peppas N.A. // Curr. Opin. Chem. Eng. 2015. V. 7. P. 84–92. https://doi.org/10.1016/j.coche.2014.12.003
- Hassan S., Prakash G., Ozturk A., Saghazadeh S., Sohail M.F., Seo J., Dokmeci M., Zhang Y.S., Khademhosseini A. // Nano Today. 2017. V. 15. P. 91–106. https://doi.org/10.1016/j.nantod.2017.06.008
- Singh R., Lillard J.W. // Exp. Mol. Pathol. 2009. V. 86. P. 215–223. https://doi.org/10.1016/j.yexmp.2008.12.004
- Hu C.M.J., Fang R.H., Luk B.T., Zhang L. // Nanoscale. 2014. V. 6. P. 65–75. https://doi.org/10.1039/C3NR05444F
- Lakkakula J.R., Krause R.W.M. // Nanomedicine. 2014. V. 9. P. 877–894. https://doi.org/10.2217/nnm.14.41
- Crini G. // Chem. Rev. 2014. V. 114. P. 10940–10975. https://doi.org/10.1021/cr500081p
- Biwer A., Antranikian G., Heinzle E. // Appl. Microbiol. Biotechnol. 2002. V. 59. P. 609–617. https://doi.org/10.1007/s00253-002-1057-x
- Bonnet V., Gervaise C., Djedaïni-Pilard F., Furlan A., Sarazin C. // Drug Discov. Today. 2015. V. 20. P. 1120– 1126. https://doi.org/10.1016/j.drudis.2015.05.008
- Mazzaglia A., Bondì M.L., Scala A., Zito F., Barbieri G., Crea F., Vianelli G., Mineo P., Fiore T., Pellerito C., Pellerito L., Costa M.A. // Biomacromolecules. 2013. V. 14. P. 3820–3829. https://doi.org/10.1021/bm400849n
- Aranda C., Urbiola K., Méndez Ardoy A., García Fernández J.M., Ortiz Mellet C., de Ilarduya C.T. // Eur. J. Pharm. Biopharm. 2013. V. 85. P. 390–397. https://doi.org/10.1016/j.ejpb.2013.06.011
- Roux M., Sternin E., Bonnet V., Fajolles C., Djedaïni-Pilard F. // Langmuir. 2013. V. 29. P. 3677–3687. https://doi.org/10.1021/la304524a
- Niikura K., Matsunaga T., Suzuki T., Kobayashi S., Yamaguchi H., Orba Y., Kawaguchi A., Hasegawa H., Kajino K., Ninomiya T., Ijiro K., Sawa H. // ACS Nano. 2013. V. 7. P. 3926–3938. https://doi.org/10.1021/nn3057005
- Docter D., Westmeier D., Markiewicz M., Stolte S., Knauer S.K., Stauber R.H. // Chem. Soc. Rev. 2015. V. 44. P. 6094–6121. https://doi.org/10.1039/c5cs00217f
- Gervaise C., Bonnet V., Wattraint O., Aubry F., Sarazin C., Jaffrès P.A., Djedaïni-Pilard F. // Biochimie. 2015. V. 94. P. 66–74. https://doi.org/10.1016/j.biochi.2011.09.005
- Zerkoune L., Angelova A., Lesieur S. // Nanomaterials (Basel). 2014. V. 4. P. 741–765. https://doi.org/10.3390/nano4030741
- Auzély-Velty R., Djedaïni-Pilard F., Désert S., Perly B., Zemb T.H. // Langmur. 2000. V. 16. P. 3727–3734. https://doi.org/10.1021/la991361z
- Nozaki T., Maeda Y., Ito K., Kitano H. // Macromolecules. 1995. V. 28. P. 522–524. https://doi.org/10.1021/ma00106a016
- Kauscher U., Stuart M.C.A., Drücker P., Galla H.-J., Ravoo B.J. // Langmuir. 2013. V. 29. P. 7377–7383. https://doi.org/10.1021/la3045434
- Erdoğar N., Esendağlı G., Nielsen T.T., Şen M., Öner L., Bilensoy E. // Int. J. Pharm. 2016. V. 509. P. 375–390. https://doi.org/10.1016/j.ijpharm.2016.05.040
- Shao S., Si J., Tang J., Sui M., Shen Y. // Macromolecules. 2014. V. 47. P. 916–921. https://doi.org/10.1021/ma4025619
- Moutard S., Perly B., Godé P., Demailly G., Djedaïni-Pilard F. // J. Incl. Phenom. 2002. V. 44. P. 317 –322.
- Gèze A., Choisnard L., Putaux J.L., Wouessidjewe D. // Mater. Sci. Eng. 2009. V. 29. P. 458–462. https://doi.org/10.1016/j.msec.2008.08.027
- Pedersen N.R., Kristensen J.B., Bauw G., Ravoo B.J., Darcy R., Larsena K.L., Pedersen L.H. // Tetrahedron Asymmetry. 2005. V. 16. P. 615–622. https://doi.org/10.1016/j.tetasy.2004.12.009
- Yaméogo J.B., Gèze A., Choisnard L., Putaux J.L., Gansané A., Sirima S.B., Semdé R., Wouessidjewe D. // Eur. J. Pharm. Biopharm. 2012. V. 80. P. 508–517. https://doi.org/10.1016/j.ejpb.2011.12.007
- Essa S., Rabanel J.M., Hildgen P. // Int. J. Pharm. 2010. V. 388. P. 263–273. https://doi.org/10.1016/j.ijpharm.2009.12.059
- Bhattacharjee S. // J. Control. Release. 2016. V. 235. P. 337–351. https://doi.org/10.1016/j.jconrel.2016.06.017
- Lesieur S., Charon D., Lesieur P., Ringard-Lefebvre C., Muguet V., Duchêne D., Wouessidjewe D. // Chem. Phys. Lipids. 2000. V. 106. P. 127–144. https://doi.org/10.1016/S0009-3084(00)00149-3
- Kasselouri A., Coleman A.W., Baszkin A. // J. Colloid Interface Sci. 1996. V. 180. P. 384–397. https://doi.org/10.1006/jcis.1996.0317
- LoPresti C., Massignani M., Fernyhough C., Blanazs A., Ryan A.J., Madsen J., Warren N.J., Armes S.P., Lewis A.L., Chirasatitsin S., Engler A.J., Battaglia G. // ACS Nano. 2011. V. 5. P. 1775–1784. https://doi.org/10.1021/nn102455z
- Putaux J.L., Lancelon-Pin C., Legrand F.X., Pastrello M., Choisnard L., Gèze A., Rochas C., Wouessidjewe D. // Langmuir. 2017. V. 33. P. 7917–7928. https://doi.org/10.1021/acs.langmuir.7b01136
- Oliva E., Mathiron D., Rigaud S., Monflier E., Sevin E., Bricout H., Tilloy S., Gosselet F., Fenart L., Bonnet V., Pilard S., Diedaini-Pilard F. // Biomolecules. 2020. V. 10. P. 339. https://doi.org/10.3390/biom10020339
- Feigin L.A., Svergun D.I. // Structure Analysis by Small-Angle X-Ray and Neutron Scattering. New York: Plenum Press, 1987. V. 1. P. 14–15. https://link.springer.com/book/10.1007/978-1-4757-6624-0
- Auzély-Velty R., Perly B., Taché O., Zemb T., Jéhan P., Guenot P., Dalbiez J.-P., Djedaı̈ni-Pilard F. // Carbohydr. Res. 1999. V. 318. P. 82–90. https://doi.org/10.1016/S0008-6215(99)00086-5
- Roling O., Wendeln C., Kauscher U., Seelheim P., Galla H.-J., Ravoo B.J. // Langmuir. 2013. V. 29. P. 10174–10182. https://doi.org/10.1021/la4011218
- Choisnard L., Gèze A., Putaux J.L., Wong Y.S., Wouessidjewe D. // Biomacromolecules. 2006. V. 7. P. 515– 520. https://doi.org/10.1021/bm0507655
- Godinho B.M.D.C., Ogier J.R., Darcy R., O’Driscoll C.M., Cryan J.F. // Mol. Pharm. 2013. V. 10. P. 640–649. https://doi.org/10.1021/mp3003946
- Chen P., Hub J.S. // Biophys. J. 2015. V. 108. P. 2573– 2584. https://doi.org/10.1016/j.bpj.2015.03.062
- Vaskan I.S., Prikhodko A.T., Petoukhov M.V., Shtykova E.V., Bovin N.V., Tuzikov A.B., Oleinikov V.A., Zalygin A.V. // Colloids and Surfaces B: Biointerfaces. 2023. V. 224. P. 113183. https://doi.org/10.1016/j.colsurfb.2023.113183
- Zalygin A., Solovyeva D., Vaskan I., Henry S., Schaefer M., Volynsky P., Tuzikov A., Korchagina E., Ryzhov I., Nizovtsev A., Mochalov K., Efremov R., Shtykova E., Oleinikov V., Bovin N. // ChemistryOpen. 2020. V. 9. P. 641–648. https://doi.org/10.1002/open.201900276
- Zhou X., Liang J.F. // J. Photochem. Photobiol. A Chemistry. 2017. V. 349. P. 124–128. https://doi.org/10.1016/j.jphotochem.2017.09.032
Дополнительные файлы
