Gold(I) Chloride Complexes with 4-Halo-substituted Phenyl Isocyanide Ligands

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

A series of gold(I) monoisocyanide [AuCl(C6H4–4-X)] (X = Cl (IIa), Br (IIb), I (IIc) and bis-isocyanide [Au(C6H4–4-X)2](PF6) (X = Cl (IIIa), Br (IIIb), I (IIIc) complexes were prepared by the reaction of [AuCl(Tht)] (Tht = tetrahydrothiophene) with the specified isocyanide. The molecular structure of IIaIIc was established by X-ray diffraction (CCDC no. 2253450 (IIa), 2253447 (IIb), 2253448 (IIc)). The crystals of IIb and IIc are isostructural; they were found to have several types of intermolecular interactions, particularly, C–X⋯Cl – Au halogen bonds, π-hole (CCNR) ⋯ (Au) interactions, and Au⋯Au aurophilic contacts, which form together a two-layer 2D supramolecular polymer. The crystals of IIb, IIc and IIIa, IIIb exhibit phosphorescence at room temperature; compounds IIa and IIIc do not possess luminescent properties; and mechanical grinding of IIaIIc and IIIaIIIc powders does not change the photophysical properties.

Texto integral

Acesso é fechado

Sobre autores

G. Gavrilov

St. Petersburg State University

Email: m.kinzhalov@spbu.ru
Rússia, St. Petersburg

K. Davletbaeva

St. Petersburg State University

Email: m.kinzhalov@spbu.ru
Rússia, St. Petersburg

M. Kinzhalov

St. Petersburg State University

Autor responsável pela correspondência
Email: m.kinzhalov@spbu.ru
Rússia, St. Petersburg

Bibliografia

  1. Yam V.W.W., Law A.S.Y. // Coord. Chem. Rev. 2020. V. 414. P. 213298.
  2. Seifert T.P., Naina V. R., Feuerstein T. J. et al. // Nanoscale. 2020. V. 12. № 39. P. 20065.
  3. Kinzhalov M.A., Grachova E. V., Luzyanin K. V. // Inorg. Chem. Front. 2022. V. 9. P. 417.
  4. Pazderski L., Abramov P. A. // Inorganics. 2023. V. 11. № 3. P. 100.
  5. Wing-Wah Y.V., Chung-Chin C. E. Photochemistry and Photophysics of Coordination Compounds: Gold. Photochemistry and Photophysics of Coordination Compounds II. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. P. 269.
  6. Yam V.W.-W., Au V. K.-M., Leung S. Y.-L. // Chem. Rev. 2015. V. 115. № 15. P. 7589.
  7. Tang M.-C., Chan M.-Y., Yam V. W.-W. // Chem. Rev. 2021. V. 121. № 13. P. 7249.
  8. Tang M.-C., Chan A. K.-W., Chan M.-Y. et al. // Top. Curr. Chem. 2016. V. 374. № 4. Р. 46.
  9. Shmelev N.Y., Okubazghi T. H., Abramov P. A. et al. // Dalton Trans. 2021. V. 50. № 36. Р. 12448.
  10. Lin Y., Jiang C., Hu F. et al. // Dyes Pigm. 2013. V. 99. № 3. Р. 995.
  11. Lu T., Zhang F., Wang X.-Y. et al. // Dyes Pigm. 2021. V. 186. Р. 108964.
  12. Au V.K.-M., Wu D., Yam V. W.-W. // J. Am. Chem. Soc. 2015. V. 137. № 14. P. 4654.
  13. Okubazghi T.H., Abramov P. A. et al. // Cryst. Growth Des. 2022. V. 22. № 6. Р. 3882.
  14. Chan M.H.-Y., Yam V. W.-W. // J. Am. Chem. Soc. 2022. V. 144. № 50. P. 22805.
  15. Girish Y.R., Prashantha K., Byrappa K. // Emerg. Mater. 2021. V. 4. № 3. P. 673.
  16. Pyykkö P. // Chem. Rev. 1997. V. 97. № 3. P. 597.
  17. Dyadchenko V.P., Belov N. M., Dyadchenko M. A. et al. // Russ. Chem. Bull. 2010. V. 59. № 3. Р. 539.
  18. Fujisawa K., Kawakami N., Onishi Y. et al. // J. Mater. Chem. C. 2013. V. 1. № 34. P. 5359.
  19. Mathieson T., Schier A., Schmidbaur H. // Dalton Trans. 2001. № 8. P. 1196.
  20. Seki T., Sakurada K., Muromoto M. et al. // Chem. Eur. J. 2016. V. 22. № 6. P. 1968.
  21. Minghetti G., Bonati F. // Inorg. Chem. 1974. V. 13. № 7. P. 1600.
  22. Eggleston D.S., Chodosh D. F., Webb R. L. et al. // Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 1986. V. 42. № 1. P. 36.
  23. Irwin M.J., Jia G., Payne N. C. et al. // Organometallics. 1996. V. 15. № 1. Р. 51.
  24. Lentz D., Willemsen S. // J. Organomet. Chem. 2000. V. 612. № 1. P. 96.
  25. Liau R.-Y., Mathieson T., Schier A. et al. // Z. Naturforsch. B. 2002. V. 57. № 8. P. 881.
  26. Schneider W., Angermaier K., Sladek A. et al. // Z. Naturforsch. B. 1996. V. 51. № 6. P. 790.
  27. White-Morris R.L., Olmstead M. M., Balch A. L. et al. // Inorg. Chem. 2003. V. 42. № 21. P. 6741.
  28. White-Morris R.L., Stender M., Tinti D. S. et al. // Inorg. Chem. 2003. V. 42. № 10. P. 3237.
  29. Schmidbaur H., Schier A. // Chem. Soc. Rev. 2008. V. 37. № 9. P. 1931.
  30. Wang C., Li Z. // Mater. Chem. Front. 2017. V. 1. № 11. P. 2174.
  31. Varughese S. // J. Mater. Chem. C. 2014. V. 2. № 18. P. 3499.
  32. Sokolova E.V., Kinzhalov M. A., Smirnov A. S. et al. // ACS Omega. 2022. V. 7. № 38. P. 34454.
  33. Wang W., Zhang Y., Jin W. J. // Coord. Chem. Rev. 2020. V. 404. P. 213107.
  34. Koshevoy I.O., Krause M., Klein A. // Coord. Chem. Rev. 2020. V. 405. P. 213094.
  35. Kashina M. V., Mikherdov A. S. et al. // Angew. Chem. Int. Ed. 2018. V. 57. № 39. P. 12785.
  36. Kashina M.V., Kinzhalov M. A., Smirnov A. S. et al. // Chem. Asian J. 2019. V. 14. P. 3915.
  37. Kryukova M.A., Ivanov D. M., Kinzhalov M. A. et al. // Chem. Eur. J. 2019. V. 25. P. 13671.
  38. Kashina M.V., Ivanov D. M., Kinzhalov M. A. // Crystals. 2021. V. 11. № 7. P. 799.
  39. Hubschle C.B., Sheldrick G. M., Dittrich B. // J. Appl. Crystallogr. 2011. 44. № 6. P. 1281.
  40. Dolomanov O.V., Bourhis L. J., Gildea R. J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339.
  41. CrysAlisPro. Agilent Technologies. Version 1.171.36.20 (release 27–06–2012). Yarnton, England, 2009.
  42. Seki T., Takamatsu Y., Ito H. // J. Am. Chem. Soc. 2016. V. 138. № 19. P. 6252.
  43. Wang M.-J., Wang Z.-Y., Luo P. et al. // Cryst. Growth Des. 2019. V. 19. № 2. P. 538.
  44. Stephany R.W., de Bie M. J.A., Drenth W. // Org. Magn. Reson. 1974. V. 6. № 1. P. 45.
  45. Kinzhalov M.A., Boyarskii V. P. // Russ. J. Gen. Chem. 2015. V. 85. № 10. P. 2313.
  46. Anisimova T.B., Kinzhalov M. A., Guedes da Silva M. F.C. et al. // New J. Chem. 2017. V. 41. № 9. P. 3246.
  47. Eggleston D.S., Chodosh D. F., Webb R. L. et al. // Acta Crystallogr. C. 1986. V. 42. № 1. P. 36.
  48. Bondi A. // J. Phys. Chem. 1964. V. 68. № 3. P. 441.
  49. Alvarez S. // Dalton Trans. 2013. V. 42. № 24. P. 8617.
  50. Desiraju G. R., Ho P. S., Kloo L. et al. // Pure Appl. Chem. 2013. V. 85. P. 1711.
  51. Ivanov D.M., Kinzhalov M. A., Novikov A. S. et al. // Cryst. Growth Des. 2017. V. 17. P. 1353.
  52. Katkova S.A., Mikherdov A. S., Kinzhalov M. A. et al. // Chem. Eur. J. 2019. V. 25. Р. 8590.
  53. Katkova S.A., Mikherdov A. S., Sokolova E. V. et al. // J. Mol. Struct. 2022. V. 1253. P. 132230.
  54. Carlos L.J., Rodríguez L. // Chem. Soc. Rev. 2011. V. 40. № 11. P. 5442.
  55. Coco S., Cordovilla C., Domínguez C. et al. // Dalton Trans. 2008. V. 48. P. 6894.
  56. Dong Y.-B., Chen Z., Yang L. et al. // Dyes Pigm. 2018. V. 150. P. 315.
  57. Irwin M.J., Vittal J. J., Puddephatt R. J. // Organo me tallics. 1997. V. 16. № 15. P. 3541.
  58. Seki T., Ida K., Sato H. et al. // Chem. Eur. J. 2020. V. 26. № 3. P. 735.
  59. Xiao H., Cheung K.-K., Che C.-M. // Dalton Trans. 1996. V. 18. P. 3699.
  60. Yam V.W.-W., Cheng E. C.-C. // Chem. Soc. Rev. 2008. V. 37. № 9. P. 1806.
  61. Shakirova J.R., Grachova E. V., Sizov V. V. et al. // Dalton Trans. 2017. V. 46. № 8. P. 2516.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Scheme 1.

Baixar (23KB)
3. Fig. 1. Structures of complexes IIa (left), IIb (centre) and IIc (right) according to PCA data with atom numbering scheme.

Baixar (5MB)
4. Fig. 2. Intermolecular interactions in IIa.

Baixar (2MB)
5. Fig. 3. Two-layer 2D supramolecular architecture of IIb resulting from a combination of noncovalent interactions. Crystals IIc have a similar supramolecular structure with similar noncovalent interactions.

Baixar (844KB)
6. Fig. 4. Normalised excitation (dashed line) and luminescence (solid line) spectra for crystalline samples IIb, IIc and IIIa, IIIb at 298 K.

Baixar (409KB)

Declaração de direitos autorais © Российская академия наук, 2024