Compounds of s-Metals with Spin-Labeled Nitrophenol

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A series of paramagnetic salts of s-elements (Li, Na, K, Rb, Cs) with deprotonated nitroxide radical, 2-(2-hydroxy-5-nitrophenyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-1-oxyl 3-oxide (L), were synthesized and isolated as crystals. According to X-ray diffraction data, these compounds are polymers of different dimensionality (CCDC nos. 2342497–2342506). As indicated by the results of quantum chemical calculations and magnetic measurements, weak antiferromagnetic exchange interactions predominate in the paramagnetic salts, with the interaction energy decreasing with increasing radius of the alkali metal ion.

Texto integral

Acesso é fechado

Sobre autores

O. Kuznetsova

International Tomography Center of the Siberian Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: bus@tomo.nsc.ru
Rússia, Novosibirsk

G. Romanenko

International Tomography Center of the Siberian Branch of the Russian Academy of Sciences

Email: bus@tomo.nsc.ru
Rússia, Novosibirsk

P. Chernavin

International Tomography Center of the Siberian Branch of the Russian Academy of Sciences

Email: bus@tomo.nsc.ru
Rússia, Novosibirsk

G. Letyagin

International Tomography Center of the Siberian Branch of the Russian Academy of Sciences

Email: bus@tomo.nsc.ru
Rússia, Novosibirsk

A. Bogomyakov

International Tomography Center of the Siberian Branch of the Russian Academy of Sciences

Email: bus@tomo.nsc.ru
Rússia, Novosibirsk

Bibliografia

  1. Stable Radicals: Fundamentals and Applied Aspects of Odd‐Electron Compounds / Ed. Hicks R.G., Chichester (UK): John Wiley & Sons, Ltd., 2010.
  2. Wang, Y., Frasconi, M., Stoddart, J.F. // ACS Cent. Sci. 2017. V. 3. P. 927. doi: 10.1021/acscentsci.7b00219
  3. Volodarsky, L.B. Reznikov, V.A., Ovcharenko, V.I. Synthetic Chemistry of Stable Nitroxides. CRC Press, 2017. doi: 10.1201/9780203710159
  4. Tretyakov E.V, Ovcharenko V.I. // Russ. Chem. Rev. 2009. V. 78. P. 971. doi: 10.1070/RC2009v078n11ABEH004093
  5. Likhtenshtein G.I. Nitroxides. Brief History, Fundamentals, and Recent Developments. Springer Series in Materials Science. Cham: Springer International Publishing, 2020. V. 292. doi: 10.1007/978-3-030-34822-9
  6. Ovcharenko V., Bagryanskaya E. // Spin-Crossover Materials / Ed. Halcrow M.A. Oxford (UK): John Wiley & Sons Ltd., 2013. P. 239.
  7. Demir S., Jeon I.-R., Long J.R., Harris T.D. // Coord. Chem. Rev. 2015. V. 289–290. P. 149. doi: 10.1016/j.ccr.2014.10.012
  8. Luneau, D. // Eur. J. Inorg. Chem. 2020. V. 2020. № 7. Р. 597. doi: 10.1002/ejic.201901210
  9. Meng X., Shi W. // Coord. Chem. Rev. 2019. V. 378. Р. 134. doi: 10.1016/j.ccr.2018.02.002
  10. Calancea S., Carrella L., Mocanu T. et al. // Eur. J. Inorg. Chem. 2021. V. 2021. № 6. P. 567. doi: 10.1002/ejic.202000954
  11. Răducă M., Martins D.O.T.A., Spinu C.A. et al. // Eur. J. Inorg. Chem. 2022. V. 202 2. № 16. Art. e202200128. doi: 10.1002/ejic.202200128
  12. Vaz M.G.F. // Coord. Chem. Rev. 2021. V. 427. P. 213611. doi: 10.1016/j.ccr.2020.213611
  13. Ovcharenko V., Kuznetsova O., Fursova E. et al. // Inorg. Chem. 2014. V. 53. P. 10033. doi: 10.1021/ic501787m
  14. Ovcharenko V., Kuznetsova O., Fursova E. et al. // Crystals. 2015. V. 5. P. 634. doi: 10.3390/cryst5040634
  15. Ovcharenko V., Kuznetsova O., Fursova E. et al. // Inorg. Chem. 2017. V. 56. P. 14567. doi: 10.1021/acs.inorgchem.7b02308
  16. Kuznetsova O.V.. Fursova E.Y.. Romanenko G.V. et al. // Russ. Chem. Bull. 2016. V. 65. P. 1167. doi: 10.1007/s11172-016-1432-x
  17. Blinou D.O., Zorina-Tikhonova E.N., Voronina J.K. et al. // Cryst. Growth Des. 2023. V. 23. P. 5571. doi: 10.1021/acs.cgd.3c00201
  18. Bazhina E.S., Shmelev M.A., Kiskin M.A., Eremenko I.L. // Russ. J. Coord. Chem. 2021. V. 47. P. 186. doi: 10.1134/S1070328421030015
  19. Fokin S., Letyagin G.A., Romanenko G.V. et al. // Russ. Chem. Bull. 2018. V. 67. P. 61. doi: 10.1007/s11172-018-2038-2
  20. Inoue K., Iwamura H. // Chem. Phys. Lett. 1993. V. 207. P. 551. doi: 10.1016/0009-2614(93)89046-K
  21. Ovcharenko V.I., Sheremetev A.B., Strizhenko K.V. et al. // Mendeleev Commun. 2021. V. 31. P. 784. doi: 10.1016/j.mencom.2021.11.005
  22. Ovcharenko V.I., Fokin S.V., Sheremetev A.B. et al. // J. Struct. Chem. 2022, V. 63. P. 1697. doi: 10.1134/S0022476622100158
  23. Her J.-H., Stephens P.W., Davidson R.A. et al. // J. Am. Chem. Soc. 2013. V. 135. P. 18060. doi: 10.1021/ja410818e
  24. Groom C.R., Bruno I.J., Lightfoot M.P., Ward S.C. // Acta Crystallogr. B. 2016. V. 72. P. 171. doi: 10.1107/S2052520616003954
  25. Tretyakov E.V., Eltsov I.V., Fokin S.V. et al. // Polyhedron. 2003. V. 22. P. 2499. doi: 10.1016/S0277-5387(03)00228-6
  26. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Crystallogr. 2015. V. 48. P. 3, doi: 10.1107/S1600576714022985
  27. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3. doi: 10.1107/S2053273314026370
  28. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. doi: 10.1107/S2053229614024218
  29. Chilton N.F., Anderson R.P., Turner L.D. et al. // J. Comput. Chem. 2013. V. 34. № 13. P. 1164. doi: 10.1002/jcc.23234
  30. Neese F. // WIREs Comput. Mol. Sci. 2022. V.12. № 5. Art e1606. doi: 10.1002/wcms.1606
  31. Becke A.D. // Phys. Rev. A. 1988 V. 38. P. 3098. doi: 10.1103/PhysRevA.38.3098
  32. Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. P.785. doi: 10.1103/PhysRevB.37.785
  33. Weigend F. // Phys. Chem. Chem. Phys. 2006. V. 8. P. 1057. doi: 10.1039/b515623h
  34. Shoji M., Koizumi K., Kitagawa Y. et al. // Phys. Lett. 2006. V. 432. P. 343. doi: 10.1016/j.cplett.2006.10.023

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Scheme 1. Structure of nitronylnitroxyl radicals LR and HL

Baixar (36KB)
3. Fig. 1. Fragment of the LiL structure and the arrangement of ribbons in the crystal. Hereinafter, the carbon skeleton is shown in grey, O in red, N in blue, and Li in pink. The H atoms and CH3 groups of HL are not shown

Baixar (204KB)
4. Fig. 2. Structure of [Li(H2O)(L)]-I (a) and [Li(H2O)(L)]-II (b) molecules and fragments of structures with the shortest contacts ONO...ONO (c, I) and (d, II)

Baixar (340KB)
5. Fig. 3. Fragment of NaL structure (a) and layer (b)

Baixar (148KB)
6. Fig. 4. Encirclement of atom K, anion L and a fragment of the layer in the KL structure

Baixar (163KB)
7. Fig. 5. Environment L, atoms K and fragments of [KL(CH3CN)] (a), [KL(MeOH)] (b) and [KL(H2O)] (c) structures

Baixar (817KB)
8. Fig. 6. Surrounding L, Rb atoms and fragment of the structure [RbL(H2O)]

Baixar (364KB)
9. Fig. 7. Surrounding L, Cs atoms and fragment of CsL structure

Baixar (206KB)
10. Fig. 8. Experimental dependences µeff(T) and fragments of the structure with the most effective channels of exchange interactions for LiL (a) and NaL (b)

Baixar (309KB)
11. Fig. 9. Experimental dependences µeff(T) for [KL(H2O)] (a) and [RbL(H2O)] (b) and fragment of [KL(H2O)] structure (c) with the most effective channels of exchange interactions

Baixar (203KB)
12. Fig. 10. Spin density distribution (surfaces labelled 0.0025 e/Å3) in the anion radicals L in the compounds LiL (a), NaL (b), [KL(H2O)] (c) and [RbL(H2O)] (d). The spin density with positive sign is shown in orange and with negative sign in purple. The H atoms were not shown

Baixar (189KB)

Declaração de direitos autorais © Российская академия наук, 2024