Собственные колебания упругой полуполосы при различном расположении участков фиксации ее краев
- Авторы: Назаров С.А.1
-
Учреждения:
- Институт проблем машиноведения РАН
- Выпуск: Том 69, № 4 (2023)
- Страницы: 398-409
- Раздел: КЛАССИЧЕСКИЕ ПРОБЛЕМЫ ЛИНЕЙНОЙ АКУСТИКИ И ТЕОРИИ ВОЛН
- URL: https://jdigitaldiagnostics.com/0320-7919/article/view/648293
- DOI: https://doi.org/10.31857/S0320791923600518
- EDN: https://elibrary.ru/TWHVCA
- ID: 648293
Цитировать
Аннотация
Исследуются частоты собственных колебаний и захваченные волны в изотропной и однородной упругой полуполосе. При разных конфигурациях зон жесткого защемления и свободного края получена информация об отсутствии или наличии собственных частот ниже, а в некоторых случаях и выше точки отсечки непрерывного спектра. Выведены оценки кратности дискретного спектра и построены разнообразные асимптотические представления захваченных волн и их частот.
Об авторах
С. А. Назаров
Институт проблем машиноведения РАН
Автор, ответственный за переписку.
Email: srgnazarov@yahoo.co.uk
Россия, Санкт-Петербург
Список литературы
- Ладыженская О.А. Краевые задачи математической физики. М.: Наука, 1973. 408 с.
- Фикера Г. Теоремы существования в теории упругости. М.: Мир, 1974.
- Камоцкий И.В., Назаров С.А. О собственных функциях, локализованных около кромки тонкой области // Проблемы матем. анализа. Вып. 19. Новосибирск: Научн. книга, 1999. С. 105–148.
- Cardone G., Durante T., Nazarov S.A. The localization effect for eigenfunctions of the mixed boundary value problem in a thin cylinder with distorted ends // SIAM J. Math. Anal. 2010. V. 42. 6. P. 25812013-2609.
- Черепанов Г.П. Механика хрупкого разрушения. М.: Наука, 1974.
- Слепян Л.И. Механика трещин. М.: Судостроение, 1981.
- Nazarov S.A., Plamenevsky B.A. Elliptic problems in domains with piecewise smooth boundaries. Berlin, New York: Walter de Gruyter. 1994.
- Назаров С.А. Дискретный спектр коленчатых квантовых и упругих волноводов // Журн. вычисл. матем. и матем. физ. 2016. Т. 56. 5. С. 8792013-895.
- Rellich F. Über das asymptotische Verhalten der Lösungen von in unendlichen Gebieten // Jahresber. Dtsch. Math.–Ver. 1943. Bd. 53. Abt. 1. S. 57–65.
- Williams M.L. Stress singularities resulting from various boundary conditions in angular corners of plate in extension // J. Appl. Mech. 1952. V.19. 4. P. 526–528.
- Партон В.З., Перлин П.И. Методы математической теории упругости. М.: Наука, 1981.
- Leis R. Initial boundary value problems of mathematical physics. Stuttgart: B.G. Teubner, 1986.
- Бирман М.Ш., Соломяк М.З. Спектральная теория самосопряженных операторов в гильбертовом пространстве. Л.: Изд-во Ленингр. ун-та, 1980. 4 с.
- Камоцкий И.В., Назаров С.А. Экспоненциально затухающие решения задачи о дифракции на жесткой периодической решетке // Матем. заметки. 2003. Т. 73. 1. С. 138–140.
- Назаров С.А. Локализованные волны в Т-образном волноводе // Акуст. журн. 2010. Т. 56. 6. С. 747–758.
- Назаров С.А. Волны, захваченные тонким искривленным экраном в волноводе с жесткими стенками // Акуст. журн. 2012. Т. 58. 6. С. 6832013-691.
- Назаров С.А. Обострение и сглаживание околопороговых аномалий Вуда в акустическом волноводе // Акуст. журн. 2018. Т. 64. 5. С. 5342013-546.
- Назаров С.А. Асимптотическая теория тонких пластин и стержней. Понижение размерности и интегральные оценки. Новосибирск: Научная книга, 2002. 408 с.
- Кондратьев В.А. Краевые задачи для эллиптических уравнений в областях с коническими или угловыми точками // Труды Московск. матем. общества. 1963. Т. 16. С. 219–292.
- Theocaris P.S., Ioakimidis N.I. Stress-intensity factors and complex path-independent integrals // Transactions of the ASME. 1980. V. 47. P. 342–346.
- Мазья В.Г., Пламеневский Б.А. О коэффициентах в асимптотике решений эллиптических краевых задач в области с коническими точками // Math. Nachr. 1977. Bd. 76. S. 29–60.
- Назаров С.А. Весовые функции и инвариантные интегралы // Вычислительная механика деформируемого твердого тела. 1990. Вып. 1. С. 17–31.
- Назаров С.А. Трещина на стыке анизотропных тел. Сингулярности упругих полей и критерии разрушения при контакте берегов // Прикладная матем. и механика. 2005. Т. 69. 3. С. 520–532.
- Ван Дайк М.Д. Методы возмущений в механике жидкостей. М.: Мир, 1967.
- Ильин А.М. Согласование асимптотических разложений решений краевых задач. М.: Наука, 1989. 36 с.
- Molchanov S., Vainberg B. Scattering solutions in networks of thin fibers: small diameter asymptotics // Comm. Math. Phys. 2007. V. 273. 2. P. 5332013-559.
- Grieser D. Spectra of graph neighborhoods and scattering // Proc. London Math. Soc. 2008. V. 97. 3. P. 718–752.
- Назаров С.А. Пороговые резонансы и виртуальные уровни в спектре цилиндрических и периодических волноводов // Известия РАН. Серия матем. 2020. Т. 84. 6. С. 73–130.
- Назаров С.А. Аномалии рассеяния акустических волн вблизи точек отсечки непрерывного спектра (обзор) // Акуст. журн. 2020. Т. 66. 5. С. 4892013-508.
- Aslanyan A., Parnovski L., Vassiliev D. Complex resonces in acoustic waveguides // Q. J. Mech. Appl. Math. 2000. V. 53. P. 429–447.
- Назаров С.А. Принудительная устойчивость простого собственного числа на непрерывном спектре волновода // Функциональный анализ и его приложения. 2013. Т. 47. 3. С. 37–53.
- Назаров С.А. Построение захваченной волны на низких частотах в упругом волноводе // Функциональный анализ и его приложения. 2020. Т. 54. 1. С. 41–57.
- Вайнберг М.М., Треногин В.А. Теория ветвления решений нелинейных уравнений. М.: Наука, 1969. R8 с.
- Roitberg I., Vassiliev D., Weidl T. Edge resonance in an elastic semi-strip // Quart. J. Mech. Appl. Math. 1998. V. 51. 1. P. 1–13.
Дополнительные файлы
