Study of the features of spin-injection generation of THz radiation in arrays of magnetic nanowires

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The operation of a spin-injection THz emitter based on an array of two-layer FeCo/FeNi nanowires grown in a track membrane is investigated. The general operating principle of a spin-injection emitter is presented. The non-thermal nature of spin-injection radiation in the frequency range of 15–20 THz was experimentally demonstrated. When the voltage reached 3 V, the effect of an abrupt increase in the resistance of the emitter, a decrease in its current, and at the same time an increase in the emitted power was observed. The effect of power increase with decreasing current is presumably associated with the presence of spin impedance in the magnetic transitions of nanowires.

About the authors

S. G Chigarev

Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences, Fryazino Branch

Email: chig50@mail.ru
Fryazino, Russia

E. A Vilkov

Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences, Fryazino Branch

Fryazino, Russia

O. A Byshevski-Konopko

Kotelnikov Institute of Radio Engineering and Electronics of the Russian Academy of Sciences, Fryazino Branch

Fryazino, Russia

D. L Zagorskiy

Federal Scientific Research Center "Crystallography and Photonics" of the Russian Academy of Sciences, National Research Center "Kurchatov Institute"

Moscow, Russia

I. M Doludenko

Federal Scientific Research Center "Crystallography and Photonics" of the Russian Academy of Sciences, National Research Center "Kurchatov Institute"

Moscow, Russia

A. I Panas

Shokin ISTOK Research and Production Enterprise

Fryazino, Russia

References

  1. Fert A., George J.-M., Jaffrés H. et al. // Europhys. News. 2003. V. 34. No. 6. P. 227.
  2. Gregg J.F., Petej I., Jouguelet E., Dennis C. // J. Phys. D. Appl. Phys. 2002. V. 35. No. 18. Art. No. R121.
  3. Maekawa S. Concepts in Spin Electronics. New York: Oxford University Press, 2006. 416 p.
  4. Grunberg P.A. // Rev. Mod. Phys. 2008. V. 80. No. 4. P. 1531.
  5. Dhillon S.S., Vitiell M.S., Linfield E.H. et al. // J. Phys. D. Appl. Phys. 2017. V. 50. Art. No. 363001.
  6. Гуляев Ю.В., Зильберман П.Е., Эпштейн Э.М., Элиот Р.Д. // Радиофиз. и электроника. 2003. Т. 48.№ 9. С. 1030
  7. Gulyaev Yu.V., Zil’berman P.E., Epshtein E.M., Elliott R.J. // J. Commun. Technol. Electron. 2003. V. 48. No. 9. P. 942.
  8. Myers E.B., Ralph D.C., Katine J.A. et al. // Science. 1999. V. 285. P. 867.
  9. Гуляев Ю.В., Зильберман П.Е., Панас А.Н., Эпштейн Э.М. // УФН. 2009. T. 179. № 4. С. 359
  10. Gulyaev Yu.V., Zilberman P.E., Panas A.I., Epshtein E.M. // Phys. Usp. 2009. V. 52. No. 4. P. 335.
  11. Kadigrobov A., Ivanov Z., Claeson T. et al. // Europhys. Lett. 2004. V. 67. No. 6. P. 948.
  12. Гуляев Ю.В., Вилков Е.А., Зильберман П.Е. и др. // Радиофиз. и электроника. 2013. T. 58. № 12. C. 1187
  13. Gulyaev Yu.V., Vilkov E.A., Zilberman P.E. et al. // J. Commun. Technol. Electron. 2013. V. 58. No. 12. P. 1137.
  14. Вилков Е.А., Михайлов Г.М., Чигарев С.Г. и др. // Радиофиз. и электроника. 2016. T. 61. № 9. C. 844
  15. Vilkov E.A., Mikhailov G.M., Chigarev S.G. et al. // J. Commun. Technol. Electron. 2016. V. 61. No. 9. P. 995.
  16. Zagorskiy D.L., Doludenko I.M.,Chigarev S.G. et al. // IEEE Trans. Magn. 2021. V. 58. No. 2. Art. No. 2300605.
  17. Гуляев Ю.В., Чигарев С.Г., Панас А.Н. и др. // Письма в ЖТФ. 2019. T. 45. № 6. C. 27
  18. Gulyaev Yu.V., Chigarev S.G., Panas A.I. et al. // Tech. Phys. Lett. 2019. V. 45. No. 3. P. 271.
  19. Панас А.Н., Чигарев С.Г., Вилков Е.А. и др. // Изв. РАН. Сер. физ. 2022. T. 86. № 7. P. 1013
  20. Panas A.I., Chigarev S.G., Vilkov E.A. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 7. P. 841.
  21. Chigarev S.G., Fomin L.A., Rai D.P. et al. // SPIN. 2023. V. 13. No. 1. Art. No. 2350010.
  22. Гуляев Ю.В., Зильберман П.Е., Маликов И.В. и др. // Радиофиз. и электроника. 2012. T. 57. № 3. C. 359
  23. Gulyaev Yu.V., Zilberman P.E., Malikov I.V. et al. // J. Commun. Technol. Electron. 2012. V. 57. No. 3. P. 329.
  24. Чигарев С.Г., Бышевский-Конопко О.А. // Изв. РАН. Сер. физ. 2023. Т. 87. № 10. С. 1499
  25. Chigarev S.G., Byshevski-Konopko O.A. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 10. P. 1533.
  26. Гуляев Ю.В., Зильберман П.Е., Чигарев С.Г. // Радиофиз. и электроника. 2015. T. 60. № 5. C. 441
  27. Gulyaev Yu.V., Zil’berman P.E., Chigarev S.G. / J. Commun. Technol. Electron. 2015. V. 60. No. 5. P. 411.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences