Bragg resonances in the yttrium iron garnet – platinum – yttrium iron garnet layered structure

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We studied theoretically the interaction between the spin current in a conductor with a strong spin-orbit coupling (platinum, Pt) and the spin wave in yttrium iron garnet ferromagnetic layers (YIG) with periodic thickness modulation under conditions of Bragg resonances and interlayer coupling. It is shown that in the YIG/Pt/YIG sandwich structure the conditions for two Bragg resonances in the first Brillouin area in the spin wave spectrum are fulfilled. The spin current in Pt allows frequency tuning of the resonances and control the depth of the spin wave band gap corresponding to the resonance conditions.

Texto integral

Acesso é fechado

Sobre autores

N. Lobanov

Saratov State National Research University

Autor responsável pela correspondência
Email: nl_17@mail.ru
Rússia, Saratov

O. Matveev

Saratov State National Research University

Email: nl_17@mail.ru
Rússia, Saratov

M. Morozova

Saratov State National Research University

Email: nl_17@mail.ru
Rússia, Saratov

Bibliografia

  1. Chumak A.V., Vasyuchka V.I., Serga A.A. et al. // Nature Physics. 2015. V. 11. P. 453.
  2. Баранов П.Г., Калашникова А.М., Козуб В.И. и др. // УФН. 2019. Т. 189. С. 849; Baranov P.G., Kalashnikova A.M., Kozub V.I. et al. // Phys. Usp. 2019. V. 62. P. 795.
  3. Brataas A., van Wees B., Klein O. et al. // Phys. Reports. 2020. V. 885. P. 1.
  4. Demidov V.E., Urazhdin S., Anane A. et al. // J. Appl. Phys. 2020. V. 127. Art. No. 170901.
  5. Zhou Y., Jiao H., Chen Y.T. et al. // Phys. Rev. B. 2013. V. 88. Art. No. 184403.
  6. Ando K., Takahashi S., Harii K. et al. // Phys. Rev. Lett. 2008. V. 101. Art. No. 036601.
  7. Demidov V.E., Urazhdin S., Edwards E.R.J., Demokritov S.O. // Appl. Phys. Lett. 2011. V. 99. Art. No. 172501.
  8. Wang X G., Guo G.H., Berakdar J. // Nature Commun. 2020. V. 11. P. 5663.
  9. Temnaya O.S., Safin A.R., Kalyabin D.V. et al. // Phys. Rev. Appl. 2022. V. 18. Art. No. 014003.
  10. Wang X.G., Schulz D., Guo G.H., Berakdar J. // Phys. Rev. Appl. 2022. V. 18. Art. No. 024080.
  11. Chumak A.V., Serga A.A., Hillebrands B. // J. Physics D. 2017. V. 50. Art. No. 244001.
  12. Morozova M.A., Sharaevskaya A. Yu., Sadovnikov A.V. et al. // J. Appl. Phys. 2016. V. 120. Art. No. 223901.
  13. Морозова М.А., Лобанов Н.Д., Матвеев О.В. и др. // Письма в ЖЭТФ. 2022. Т. 115. С. 793; Morozova M.A., Lobanov N.D., Matveev O.V. et al. // JETP Lett. 2022. V. 115. P. 742.
  14. Вашковский А.В., Стальмахов В.С., Шараевский Ю.П. Магнитостатические волны в электронике сверхвысоких частот. Саратов: Изд-во СГУ, 1993.
  15. Ruderman M.A., Kittel C. // Phys. Rev. 1954. V. 96. P. 99.
  16. Marcuse D. Light transmission optics. Bell Laboratory Series. 1972.
  17. Kalinikos B.A., Slavin A.N. // J. Phys. Cond. Matter. 1986. V. 19. P. 7013.
  18. Qin H., Hämäläinen S.J., Arjas K. et al. // Phys. Rev. B. 2018. V. 98. Art. No. 224422.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Schematic of the magnetisation vector precession in MK-1 (a) and MK-2 (b). Schematic of the investigated structure (c)

Baixar (170KB)
3. Fig. 2. Schematic of the investigated structure in the zOy projection

Baixar (157KB)
4. Fig. 3. Dependence on the magnitude and polarity of ST of the resonance frequencies (solid curves) and (dashed curves) (a), imaginary parts of additions to the Bragg wave number Im(q) for direct waves (curves 1) and reflected waves (curves 2) at different values of χ (dipole coupling and exchange RKKI interaction) (b) (χ1 = 2. 8 × 1019 rad2/ns2, χ2 = 4.1 × 1019 rad2/ns2, χ3 = 5.5 × 1019 rad2/ns2). Calculation parameters: D = 10 nm, M0 = 140 Gs, α = 10-4, L1,2 = 50, c = 25 nm, a = 100 nm, Δ = 40 nm, b = 60 nm, H0 = 800 Å, Aex = 4.7 Gs2 μm2, θSH = 0.08, S = 1, Kex = 728 Gs2 μm, Kdip = 0.2

Baixar (179KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024