Analysis of the spatial dynamics of the auroral hiss and longitudinal currents based on observations at the Barentsburg Observatory and the AMPERE project

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

We presented the results of the auroral hiss illuminated region location based on measurements of the magnetic field polarization and azimuthal angles of arrival of these emissions according to observations at the Barentsburg Observatory (BAB). The results obtained are compared with the position of the longitudinal current amplification region supplied by the AMPERE project. An event is identified where two separate regions of field-aligned current amplification exist simultaneously. The arrival angles histograms at BAB have two maxima, indicating waves arriving from two distinct directions. We also discussed the event of moving the hiss illumination region along the longitude from east to west, simultaneously with the movement of the aurora and the region of field-aligned currents in the same direction, as well as the simultaneous displacement of the illumination region and the area of amplification of the resulting longitudinal currents towards the auroral latitudes. Based on the findings of our analysis, we have proposed a possible connection between the occurrence of hiss on the ground-based level and the activity of longitudinal currents in the ionosphere.

Sobre autores

A. Nikitenko

Polar Geophysical Institute

Email: alex.nikitenko91@gmail.com
Apatity, Russia

Yu. Fedorenko

Polar Geophysical Institute

Apatity, Russia

N. Kleimenova

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Moscow, Russia

Bibliografia

  1. Sazhin S.S., Bullough K., Hayakawa M. // Plane. Space Sci. 1993. V. 41. No. 2. P. 153.
  2. Hoffman R.A., Laaspere T. // J. Geophys. Res. 1972. V. 77. No. 4. P. 640.
  3. Sonwalkar V.S., Harikumar J. // J. Geophys. Res. 2000. V. 105. No. A8. P. 18867.
  4. Spasojevic M. // J. Geophys. Res. 2016. V. 121. P. 7547.
  5. Manninen J., Kleimenova N., Kozlovsky A. et al. // Geophys. Res. Lett. 2020. V. 47. Art. No. E2019GL086285.
  6. https://ampere.jhuapl.edu.
  7. Пильгаев С.В., Ларченко А.В., Федоренко Ю.В. и др. // Приб. и техн. экспер. 2021. Т. 64. № 5. С.115
  8. Pil’gaev S.V., Larchenko A.V., Fedorenko Y.V. et al. // Instrum. Exp. Tech. 2021. V. 64. No. 5. P. 744.
  9. Рытов С.М. Введение в статистическую радиофизику. М.: Наука, 1976.
  10. Лебедь О.М., Федоренко Ю.В., Маннинен Ю.и др. // Геомагн. и аэрономия. 2019. Т. 59. № 5. С. 618
  11. Lebed O.M., Fedorenko Yu.V., Manninen J. et al. // Geomagn. Aeron. 2019. V. 59. No. 5. P. 577.
  12. Никитенко А.С., Лебедь О.М., Федоренко Ю.В. и др. // Изв. РАН. Сер. физ. 2021. Т. 85. № 3. С. 398
  13. Nikitenko A.S., Lebed O.M., Fedorenko Yu.V. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 3. P. 287.
  14. Tsuruda K., Ikeda M. // J. Geophys. Res. 1979. V. 84. No. A9. P. 5325.
  15. Yearby K., Smith A. // JASTR. 1994. V. 56. No. 11. P. 1499.
  16. Никитенко А.С., Маннинен Ю., Федоренко Ю.В. и др. // Геомагн. и аэрономия. 2022. Т. 62. No. 3. С. 336
  17. Nikitenko A.S., Manninen J., Fedorenko Yu.V. et al. // Geomagn. Aeron. 2022. V. 62. No. 3. P. 209.
  18. Makita K. // Mem. Nat. Inst. Polar Res. Tokyo. Ser. A. 1979. No. 16. P. 1.
  19. Kelley M.C., Vickrey J.F., Carlson C.W. et al. // J. Geophys. Res. 1982. V. 87. No A6. P. 4469.
  20. Vickrey J.F., Rino C.L., Potemra T.A. // Geophys. Res. Lett. 1980. V. 7. No. 10. P. 789.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025