Electromagnetic emissions by ZEVS transmitter and the “Northern transit” power transmission line registered on CSES satellite

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

82 Hz radiation from ZEVS transmitter and 50 Hz emission from the “Northern transit” power transmission line was registered by the low-orbit satellite CSES (altitude ~500 km) while flying over the Kola Peninsula. ZEVS signal was detected at distances from 300 to 2300 km, as measured between the subsatellite point and the transmitter. Amplitude of electric component |E| at frequency of 82 Hz was found to be about 2.5 μV/m at 800 km from the transmitter. The corresponding amplitude of magnetic component |B| was found to be about 1.3 pT. The spatial structure of amplitudes of 50 Hz radiation dramatically rearranged during the satellite’s transition from one power line to another. Amplitude of electric and magnetic component of 50 Hz radiation registered above the Northern Transit power line, was estimated as follows: |E| ≈ 0.5–2.0 μV/m and |B| ≈ 0.5–1.5 pT. Measurements at small distances from the source (several hundred km) qualitatively agree with the results of the simulated spatial structure of wave field in the upper ionosphere, excited by a horizontal current of a finite length. However, at large distances, the amplitude of the 82 Hz radiation decreased more slowly with distance from the ZEVS transmitter compared to model calculations, based on assumption of vertical geomagnetic field.

作者简介

N. Savelyeva

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: nasa2000@yandex.ru
Moscow, Russia

V. Pilipenko

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences; Space Research Institute of the Russian Academy of Sciences

Moscow, Russia; Moscow, Russia

N. Mazur

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Moscow, Russia

E. Fedorov

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Moscow, Russia

S. Zhao

State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences

Beijing, China

参考

  1. Balogh A., Gombosi T.I., Baker D.N. et al. // Space Sci. Rev. 2017. V. 212. No. 3–4. P. 985.
  2. Велихов Е.П. Взаимодействие электромагнитных полей контролируемых источников СНЧ диапазона с ионосферой и земной корой. Сб. статей, посвященных работам с СНЧ радиоустановкой «ЗЕВС» по двухцелевому назначению в рамках конверсионной политики России. Т. 1. Апатиты: Кольский научный центр, 2014. 206 с.
  3. Пилипенко В.А., Федоров Е.Н., Мазур Н.Г., Климов С.Н. // Солн.-зем. физ. 2021. Т. 7. № 3. C. 111
  4. Pilipenko V.A., Fedorov E.N., Mazur N.G., Klimov S.I. // Sol.-Terr. Phys. 2021. V. 7. No. 3. P. 105.
  5. Селиванова В.Н., Аксенович Т.В., Билин В.А. и др. // Солн.-зем. физ. 2023. Т. 9. № 3. C. 100
  6. Selivanov V.N., Aksenovich T.V., Bilin V.A., Kolobov V.V. et al. // Sol.-Terr. Phys. 2023. V. 9. No. 3. P. 93.
  7. Dudkin F., Korepanov V., Dudkin D. et al. // Geophys. Res. Lett. 2015. V. 42. P. 5686.
  8. Fedorov E., Mazur N., Pilipenko V. et al. // Radio Sci. 2020. V. 121. P. 55. Art. No. e2019RS006943.
  9. Fedorov E.N., Mazur N.G., Pilipenko V.A. // J. Geophys. Res. 2021. V. 126. Art. No. e2021JA029659.
  10. Zhao S., Liao L., Shen X. et al. // J. Geophys. Res. 2022. V. 127. Art. No. e2022JA030693.
  11. Ma Z., Zhao S., Liao L. et al. // Sci. China. Technol. Sci. 2024. V. 67. P. 1879.
  12. Lizunov G., Korepanov V., Piankova O. // J. Geophys. Res. 2023. V. 128. Art. No. e2023JA031668.
  13. Nemec F., Parrot M., Santolik O. // J. Geophys. Res. 2015. V. 120. P. 8954.
  14. Жамалетдинов А.А., Шевцов А.Н., Велихов Е.П. и др. // Геофиз. проц. и биосфера. 2015. Т. 14.№2. С. 5
  15. Zhamaletdinov A.A., Shevtsov A.N., Velikhov E.P. et al. // Geophys. Proc. Biosphere. 2015. V. 14. No. 2. P. 5.
  16. Грач В.С., Демехов А.Г. // Физ. плазмы. 2023. Т. 49. № 7. C. 683
  17. Grach V.S., Demekhov A.G. // Plasma Phys. Rep. 2023. V. 49. No. 7. P. 901.
  18. Пилипенко В.А., Мазур Н.Г., Федоров Е.Н., Шевцов А.Н. // Изв. РАН. Сер. физ. 2024. Т. 88. № 3. C. 392
  19. Pilipenko V.A., Mazur N.G., Fedorov E.N., Shevtsov A.N. // Bull. Russ. Acad. Sci. Phys. 2024. V. 88. No. 3. P. 331.
  20. Фёдоров Е.Н., Мазур Н.Г., Пилипенко В.А. // Изв. вузов. Радиофиз. 2022. Т. 65. № 9. C. 697
  21. Fedorov E.N., Mazur N.G., Pilipenko V.A. // Radiophys. Quantum Electron. 2023. V. 65. P. 635.
  22. Liu J.Y.T., Shen X. et al. // Geosci. Lett. 2024. V. 11. P. 4.
  23. Diego P., Huang J., Piersanti M. et al. // Instruments. 2021. V. 5. No. 1. P. 1.
  24. Fedorov E.N., Mazur N.G., Pilipenko V.A. et al. // J. Geophys. Res. 2023. V. 128. Art. No. e2023JA031590.
  25. Li Z., Yang B., Huang J. et al. // Atmosphere. 2022. V. 13. P. 934.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025