Spatial features of the ionospheric disturbance caused by a meteorological squall

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Numerical experiments were carried out aimed at investigating the changes in atmospheric and ionospheric parameters caused by the propagation of atmospheric waves from the troposphere from a meteorological source. Numerical simulations were carried out using the high-resolution numerical model AtmoSym and the Global Self-Consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP). Acoustic and internal gravity waves are included in the large-scale model without parameterization.

作者简介

F. Bessarab

Institute of Terrestrial magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences, West Department

Kaliningrad, Russia

Yu. Kurdyaeva

Institute of Terrestrial magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences, West Department

Email: yakurdyaeva@gmail.com
Kaliningrad, Russia

O. Borchevkina

Institute of Terrestrial magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences, West Department

Kaliningrad, Russia

M. Klimenko

Institute of Terrestrial magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences, West Department

Kaliningrad, Russia

参考

  1. Pedatella N.M. // Front. Astron. Space Sci. 2022. V. 9. Art. No. 957007.
  2. Laštovička J. // Atm. Chem. Phys. 2023. V. 23. P. 5783.
  3. Koucká Krzová P., Mošna Z., Kouba D. et al. // Atm. Sol.-Terr. Phys. 2015. V. 136 P. 244.
  4. Chernigovskaya M.A., Shpynev B.G., Ratovsky K.G. // J. Atm. Sol.-Terr. Phys. 2015. V. 136B. P. 235.
  5. Borchevkina O.P., Kurdyaeva Y.A., Dyakov Y.A. et al. // Atmosphere. 2021. V. 12. No. 11. P. 1384.
  6. Yigit E., Medvedev A.S. // Adv. Space Res. 2015. V. 55. No. 4. P. 983.
  7. Fritts D.C., Alexander M.J. // Rev. Geophys. 2003. V. 41. Art. No. 1.
  8. Гаврилов Н.М., Коваль А.В. // Изв. РАН. Физ. атм. и океана. 2013. Т. 49. № 3. С. 271
  9. Gavrilov N.M., Koval A.V. // Izv. Atm. Ocean. Phys. 2013. V. 49. No. 3. P. 244.
  10. Мингалев И.В., Орлов К.Г., Федотова Е.А. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. № 3. С. 434
  11. Mingalev I.V., Orlov K.G., Fedotova E.A. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 3. P. 354.
  12. Kurdyaeva Y., Bessarab F., Borchevkina O., Klimenko M. // Adv. Space Res. 2024. V. 74. P. 2463.
  13. Намгаладзе А.А., Кореньков Ю.Н., Клименко В.В. и др. // Геомагн. и аэрономия. 1990. Т. 30. № 4. С. 612
  14. Namgaladze A.A., Koren’kov Y.N., Klimenko V.V. et al. // Geomagn. Aeron. 1990. V. 30. No. 4. P. 612.
  15. Gavrilov N.M., Kshevetskii S.P. // Earth Planets Space. 2014. V. 66. No. 1. P. 88.
  16. Vasil'ev P.A., Karpov I.V., Kshevetskii S.P. // Russ. J. Phys. Chem. B. 2017. V. 11. No 6. P. 1028.
  17. Karpov I.V., Kshevetskii S.P. // Atm. Sol.-Terr. Phys. 2017. V. 164. P. 89.
  18. Bessarab F.S., Korenkov Y.N., Klimenko M.V. et al. // J. Atm. Sol.-Terr. Phys. 2012. V. 90-91. No 1. P. 77.
  19. Курдяева Ю.А., Борчевкина О.П., Голикова Е.В., Карпов И.В. // Изв. РАН. Сер. физ. 2024. Т. 88. № 3. С. 81
  20. Kurdyaeva Y.A., Borchevkina O.P., Golikova E.V., Karpov I.V. // Bull. Russ. Acad. Sci. Phys. 2024. V. 88. No. 3. P. 412.
  21. Kurdyaeva Y., Kshevetskii S., Borchevkina O. et al. // Atm. Geophys. 2019. V. 37. No 3. P. 447.
  22. Borchevkina O., Karpov I., Karpov M. // Atmosphere. 2020. V. 11. No. 9. P. 1017.
  23. Rishbeth H. // J. Atm. Sol.-Terr. Phys. 1977. V. 39. P. 1159.
  24. Курдяева Ю.А., Кшевецкий С.П., Борчевкина О.П., Карпов М.И. // Геомагн. и аэрономия. 2022. Т. 62. № 4. С. 537
  25. Kurdyaeva Y.A., Kshevetsky S.P., Borchevkina O.P., Karpov M.I. // Geomagn. Aeron. 2022. V. 62. No. 4. P. 453.
  26. Medvedev A.V., Ratovsky K.G., Tolstikov M.V. et al. // Int. J. Geophys. 2017. V. 122. No. 7. P. 7567.
  27. Li W., Yue J., Wu S. et al. // GPS Solut. 2018. V. 22. No. 3. P. 1.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025