High-entropy columbites: structure, optical and electrical properties

Capa

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A high-entropy composition (Mg0.2Zn0.2Ni0.2Co0.2Mn0.2)Nb2O6 with a columbite structure and its Ti-substituted composition (5%) were synthesized. The synthesis was carried out using a modified method of combustion solutions followed by high-temperature sintering. X-ray analysis and scanning electron microscopy were used for characterization of the ceramics. According to diffuse reflectance spectra, the band gap of direct electronic transitions was calculated (Egdir ≈ 2.98–3.05 eV). Solid solutions are characterized predominantly by electronic conductivity. Substitution of niobium cations with titanium leads to an increase in conductivity by 1.2 orders of magnitude in the temperature range 160–750°C.

Texto integral

Acesso é fechado

Sobre autores

M. Koroleva

Institute of Chemistry FRC Komi SC UB RAS

Email: marikorolevas@gmail.com
Rússia, Syktyvkar

V. Maksimov

Institute of Chemistry FRC Komi SC UB RAS; Pitirim Sorokin Syktyvkar State University

Autor responsável pela correspondência
Email: marikorolevas@gmail.com
Rússia, Syktyvkar; Syktyvkar

D. Korolev

ITMO University

Email: marikorolevas@gmail.com
Rússia, Saint-Petersburg

I. Piir

Institute of Chemistry FRC Komi SC UB RAS

Email: piyr-iv@chemi.komisc.ru
Rússia, Syktyvkar

Bibliografia

  1. Lee, H.J., Hong, K.S., Kim, S.J., and Kim, I.T., Dielectric properties of MNb2O6 compounds (where M = Ca, Mn, Co, Ni, or Zn), Mater. Res. Bull., 1997, vol. 32, p. 847.
  2. Belous, A., Ovchar, O., Jancar, B., Spreitzer, M., Annino, G., Grebennikov, D., and Mascher, P., The effect of chemical composition on the structure and dielectric properties of the columbites A2+ MNb2O6, J. Electrochem. Soc., 2009, vol. 156, p. G206.
  3. Zhang, Y.C., Yue, Z.X., Gui, Z.L., and Li, L.T., Microwave dielectric properties of (Zn1–xMgx) Nb2O6, ceramics, Mater. Lett., 2003, vol. 57, p. 4531.
  4. Zhang, Y.C., Yue, Z.X., Qi, X., Li, B., Gui, Z.L., and Li, L.T., Microwave dielectric properties of Zn(Nb1–xTax)2O6 ceramics, Mater. Lett., 2004, vol. 58, p. 1392.
  5. Kim, J.H. and Kim, E.S., Effect of isovalent substitution on microwave dielectric properties of Mg4Nb2O9 ceramics, J. Electron. Mater., 2019, vol. 48, p. 2411.
  6. Thirumal, M. and Ganguli, A.K., Synthesis and dielectric properties of magnesium niobate-magnesium tantalate solid solutions, Mater. Res. Bull., 2001, vol. 36, p. 2421.
  7. Pullar, R.C., Vaughan, C., and McN Alford, N., The effects of sintering aids upon dielectric microwave properties of columbite niobates, M2+Nb2O6, J. Phys. D. Appl. Phys., 2004, vol. 37, p. 348.
  8. Huang, Z. and Li L., Enhanced microwave dielectric performances of niobate structured Zn(Nb1-2xZrxWx)2O6 ceramics, Ceram. Int., 2024, vol. 50, p. 12081.
  9. Cheng, Ch., Wu, D., Gong, T., Yan, Y., Liu, Y., Ji, W., Hou, L., and Yuan, Ch., Internal and external cultivation design of zero‐strain columbite‐structured MNb2O6 toward lithium-Ion capacitors as competitive anodes, Adv. Energy Mater., 2023, vol. 13, p. 2302107.
  10. De Luna, Y., N.B., Ma, Sh., Li, G., and Bensalah, N., Highly stable free-standing cobalt niobate with orthorhombic structure as anode material for Li-ion batteries, ChemElectroChem, 2024, vol. 11, p. e202300627.
  11. Morkhova, Y.A., Koroleva, M.S., Egorova, A.V., Pimenov, A.A., Krasnov, A.G., Makeev, B.A., Blatov, V.A., and Kabanov, A.A., Magnocolumbites Mg1–xMxNb2O6–δ (x = 0, 0.1, and 0.2; M = Li and Cu) as new oxygen ion conductors: Theoretical Assessment and Experiment, J. Phys. Chem. C, 2023, vol. 127, p. 52.
  12. Morkhova, Y.A., Koroleva, M.S., Egorova, A.V., Krasnov, A.G., Starostina, I.A., and Kabanov, A.A., Exhaustive study of electrical conductivity in the MNb2–xTixO6–0.5x (M = Mg, Ca, Zn; x = 0, 0.1, 0.2) columbites, ECS Adv., 2024, vol. 3, p. 024504.
  13. Arroyo Y De Dompablo, M.E., Lee, Y.L., and Morgan, D., First principles investigation of oxygen vacancies in columbite MNb2O6 (M = Mn, Fe, Co, Ni, Cu), Chem. Mater., 2010, vol. 22, p. 906.
  14. López-Blanco, M., Amador, U., and García-Alvarado, F., Structural characterization and electrical properties of NiNb2–xTaxO6 (0 ≤ x ≤ 2) and some Ti-substituted derivatives, J. Solid State Chem., 2009, vol. 182, p. 1944.
  15. Orera, A., García-Alvarado, F., and Irvine, J.T.S., Effect of Ti-substitution on the electrical properties of MnNb2O6–δ, Chem. Mater., 2007, vol. 19, p. 2310.
  16. Sarkar, A., Wang, Q., Schiele, A., Chellali, M.R., Bhattacharya, S.S., Wang, D., Brezesinski, T., Hahn, H., Velasco, L., and Breitung, B., High-Entropy oxides: fundamental aspects and electrochemical properties, Adv. Mater., 2019, vol. 31, p. 1806236.
  17. Li, F., Zhou, L., Liu, J.X., Liang, Y., and Zhang, G.J., High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials, J. Adv. Ceram., 2019, vol. 8, p. 576.
  18. Ren, K., Wang, Q., Shao, G., Zhao, X., and Wang, Y., Multicomponent high-entropy zirconates with comprehensive properties for advanced thermal barrier coating, Scr. Mater., 2020, vol. 178, p. 382.
  19. Feng, C., Zhou, Y., Chen, M., Zou, L., Li, X., An, X., Zhao, Q., Xiaokaiti, P., Abudula, A., Yan, K., and Guan, G., High-entropy spinel (FeCoNiMnAl)3O4 with three-dimensional microflower structure for stable seawater oxidation, Appl. Catal. B Environ. Energy, 2024, vol. 349, p. 123875.
  20. Rodríguez-Carvajal, J., Recent advances in magnetic structure determination by neutron powder diffraction, Phys. B Phys. Condens. Matter, 1993, vol. 192, p. 55.
  21. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides, Acta Cryst. А, 1976, vol. 32, p. 751.
  22. Pullar, R.C., The synthesis, properties, and applications of columbite niobates (M2+Nb2O6): A critical review, J. Am. Ceram. Soc., 2009, vol. 92, p. 563.
  23. Brahma, S., Choudhary, R.N.P., and Thakur, A.K., AC impedance analysis of LaLiMo2O8 electroceramics, Phys. B Condens. Matter., 2005, vol. 355, p. 188.
  24. Nasri, S., Oueslati, A., Chaabane, I., and Gargouri, M., AC conductivity, electric modulus analysis and electrical conduction mechanism of RbFeP2O7 ceramic compound, Ceram. Int., 2016, vol. 42, p. 14041.
  25. Tan, K.B., Khaw, C.C., Lee, C.K., Zainal, Z., Tan, Y.P., and Shaari, H., High temperature impedance spectroscopy study of non-stoichiometric bismuth zinc niobate pyrochlore, Mater. Sci. Pol., 2009, vol. 27, p. 947.
  26. Tan, P.Y., Tan, K.B., Khaw, C.C., Zainal, Z., Chen, S.K., and Chon, M.P., Structural and electrical properties of bismuth magnesium tantalate pyrochlores, Ceram. Int., 2012, vol. 38, p. 5401.
  27. Koroleva, M.S., Ishchenko, A.V., Vlasov, M.I., Krasnov, A.G., Istomina, E.I., Shein, I.R., Weinstein, I.A., and Piir, I.V., Structural, Optical, Luminescence, and Electrical Properties of Eu/Li- and Eu/Na-Codoped Magnesium Bismuth Niobate Pyrochlores, Inorg. Chem., 2022, vol. 61, p. 9295.
  28. Kamimura, S., Abe, S., Tsubota, T., and Ohno, T., Solar-driven H2 evolution over CuNb2O6: Effect of two polymorphs (monoclinic and orthorhombic) on optical property and photocatalytic activity, J. Photochem. Photobiol. A Chem., 2018, vol. 356, p. 263.
  29. El Bachiri, A., El Hasnaoui, M., Louardi, A., Narjis, A., and Bennani, F., Structural and dielectric studies for the conduction mechanism analyses of lithium-niobate oxide ferroelectric ceramics, Phys. B Condens. Matter., 2019, vol. 571, p. 181.
  30. Jonscher, A.K., A new understanding of the dielectric relaxation of solids, J. Mater. Sci., 1981, vol. 16, p. 2037

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1 Experimental and theoretical X-ray patterns and their difference profile for VEK and VEK-Ti0.1

Baixar (146KB)
3. Fig. 2 Microphotographs of the VEC (composition according to EMF:(Mg0.19Mn0.19Ni0.18Co0.19Zn0.18)Nb2O6–δ) and VEC-Ti0.1 (composition according to EMF: 1 – (Mg0.18Mn0.19Ni0.18Co0.18Zn0.18)Nb1.9Ti0.10O6–δ, 2 –(Mg0.14Mn0.28Ni0.86Co0.56Zn1.20)Nb0.3TiO6–δ).

Baixar (215KB)
4. Fig. 3. Dependences of the lattice parameter a (a) and the unit cell volume Vcell (b) on the ionic radius of cations in the A-positions of the columbite structure ANb2O6. The data on the lattice parameters and volume for individual columbites are taken from [22], the ionic radii are taken from Shannon [21].

Baixar (139KB)
5. Fig. 4. Absorption spectra and Tauc dependences (insert) for VEC and VEC-Ti0.1 for a direct allowed electronic transition.

Baixar (182KB)
6. Fig. 5. Nyquist plots for VEK and VEK-Ti0.1 at 200, 320, 460 and 600°C.

Baixar (342KB)
7. Fig. 6. Frequency dependences of the imaginary component of the electrical modulus M'' and impedance –Z'' for VEK (a) and VEK-Ti0.1 (b), normalized graphs of the imaginary component of the electrical modulus M''/M''max on the normalized frequency f/fmax (c), dependence of the frequency at maximum M'' on the reciprocal temperature (d).

Baixar (666KB)
8. Fig. 7. Frequency dependences of conductivity for VEC (a) and VEC-Ti0.1 (b) (the red line corresponds to the modeling of the curve according to Jonscher’s law), dependence of conductivity at direct current, obtained according to Jonscher’s equation, on the inverse temperature (c).

Baixar (427KB)
9. Fig. 8. Conductivity dependences on the inverse temperature: (a) for VEC, VEC-Ti0.1 at direct current, for MgNb2O6 (1 kHz) [11] and MnNb2–xTixO6–δsub (x = 0, 0.1) [15] at alternating current; (b) for VEC and VEC-Ti0.1 when using silver electrodes (Ag|S|Ag) and an ion-blocking carbon electrode (Ag|S|C) (S-sample) at direct current.

Baixar (290KB)

Nota

2 Based on the materials of the report at the 17th International Meeting “Fundamental and applied problems of solid state ionics”, Chernogolovka, June 16–23, 2024.


Declaração de direitos autorais © Russian Academy of Sciences, 2025