Dependence of the Group Specificity of Immunoenzyme Determination of Penicillins in Milk on the Temperature and Duration of Antibiotic Cross Reactions with Polyclonal Antibodies

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The influence of thermodynamic and kinetic conditions on the interaction of polyclonal antibodies to penicillins with the antibiotics of a penicillin group was studied in the system of a direct enzyme-linked immunosorbent assay (ELISA). Minimum differences in the cross reactions of the polyclonal antibodies with different penicillins were observed when the ELISA was carried out at 4°C for 1 hour. An increase in temperature and duration of the assay led to an increase in antibodies reactivity only to amoxicillin, and significantly enhanced differences among the sensitivities of individual penicillins determination. Under the chosen assay conditions, the following antibodies cross-reactivity values were obtained: to penicillin G — 90%, to ampicillin — 100%, to amoxicillin — 110%. The analytical sensitivity was 0.03 ng/mL for ampicillin, and the limit of ampicillin quantification in milk was 0.4 μg/L. The developed group-specific ELISA was used for the determination in milk of seven penicillins that are regulatory controlled in foods and raw materials of animal origin — penicillin G, ampicillin, amoxicillin, cloxacillin, oxacillin, dicloxacillin and nafcillin.

全文:

受限制的访问

作者简介

O. Kuprienko

Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus

编辑信件的主要联系方式.
Email: kuprienko@iboch.by
白俄罗斯, Minsk, 220084

I. Vashkevich

Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus

Email: kuprienko@iboch.by
白俄罗斯, Minsk, 220084

A. Zilberman

Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus

Email: kuprienko@iboch.by
白俄罗斯, Minsk, 220084

O. Sviridov

Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus

Email: kuprienko@iboch.by
白俄罗斯, Minsk, 220084

参考

  1. Miller E. L. // J. Midwifery Women’s Health. 2002. V. 47. № 6. P. 426–434. https://doi.org/10.1016/s1526-9523(02)00330-6
  2. Nathwani D., Wood M. J. // Drugs. 1993. V. 45. № 6. P. 866–894. https://doi.org/10.2165/00003495-199345060-00002
  3. Шульга Н. Н., Шульга И. С., Плавшак Л. П. // Тенденции развития науки и образования. 2019. Т. 46. № 5. С. 32–35. https://doi.org/10.18411/lj-01-2019-98
  4. Sazykin I. S., Khmelevtsova L. E., Seliverstova E. Y., Sazykina M. A. // Appl. Biochem. Microbiol. 2021. V. 57. № 1. P. 20–30. https://doi.org/10.1134/S0003683821010166
  5. Berendonk T. U., Manaia C. M., Merlin C., Fatta-Kassinos D., Cytryn E., Walsh F., et al. // Nat. Rev. Microbiol. 2015. V. 13. P. 310–317. https://doi.org/10.1038/nrmicro3439
  6. Шевелева С. А., Хотимченко С. А., Минаева Л. П., Смотрина Ю. В. // Вопросы питания. 2021. Т. 90. № 3. С. 50–57. https://doi.org/10.33029/0042-8833-2021-90-3-50-57
  7. Van Hoek A. H.A.M., Mevius D., Guerra B., Mullany P., Roberts A. P., Aarts H. J.M. // Front. Microbiol. 2011. V. 2. Article 203. https://doi.org/10.3389/fmicb.2011.00203
  8. Mikhaleva T. V., Ilyasov P. V., Zakharova O. I. // Appl. Biochem. Microbiol. 2019. V. 55. № 2. P. 99–106. https://doi.org//10.1134/S000368381902011X
  9. Решение Коллегии Евразийской экономической комиссии от 13 февраля 2018 г. № 28. docs.eaeunion.org/docs/ru-ru/01217013/clc-d_15022018_28
  10. European Comission. Council Regulation (EU) No. 37/2010 of 22 December 2009 on Pharmacologically Active Substances and their Classification Regarding Maximum Residue Limits in Foodstuffs of Animal Origin. // Official Journal of the European Union. 2010. L 15/10.
  11. Barros S. C., Silva A. S., Torres D. // Antibiotics 2023. V. 12. № 2. P. 202. https://doi.org/10.3390/antibiotics12020202
  12. Moga A., Vergara-Barberán M., Lerma-García M.J., Carrasco-Correa E.J., Herrero-Martínez J.M., Simó-Alfonso E.F. // Compr. Rev. Food Sci. Food Saf. 2021. V. 20. № 2. P. 1681–1716. https://doi.org/10.1111/1541-4337.12702
  13. Marazuela M. D., Bogialli S. // Anal. Chim. Acta. 2009. Vol. 645. № 1–2. P. 5–17. https://doi.org/10.1016/j.aca.2009.04.031
  14. Holstege D. M., Puschner B., Whitehead G., Galey F. D. // J. Agric. Food. Chem. 2002. V. 50. № 2. P. 406–411. https://doi.org/10.1021/jf010994s
  15. Pugajeva I., Ikkere L. E., Judjallo E., Bartkevics V. // J. Pharm. Biomed. Anal. 2019. V. 166. P. 252–263. https://doi.org/10.1016/j.jpba.2019.01.024
  16. Bessaire T., Mujahid C., Beck A., Tarres A., Savoy M. C., Woo P. M. et al. // Food Addit. Contam. Part A. 2018. V. 35. № 4. P. 661–673. https://doi.org/10.1080/19440049.2018.1426891
  17. Dzantiev B. B., Byzova N. A., Urusov A. E., Zherdev A. V. // Trends Anal. Chem. 2014. V. 55. P. 81–93. https://doi.org/10.1016/j.trac.2013.11.007.
  18. Reig M., Toldrá F. // Meat Sci. 2008. V. 78. № 1–2. P. 60–67. https://doi.org/10.1016/j.meatsci.2007.07.029
  19. Duffy G. F., Moore E. J. // Anal. Lett. 2017. V. 50. № 1. P. 1–32. https://doi.org/10.1080/00032719.2016.1167900
  20. Xu F., Ren K., Yang Y. Z., Guo J. P., Ma G. P., Liu Y. M. et al. // J. Integ. Agric. 2015. V. 14. № 11. P. 2282–2295. https://doi.org/10.1016/S2095-3119(15)61121-2.
  21. Serchenya T. S., Semizhon P. A., Schaslionak A. P., Harbachova I. V., Vashkevich I. I., Sviridov O. V. // Appl. Biochem. Microbiol. 2023. V. 59. № 1. P. 79–92. https://doi.org/10.1134/S0003683823010106
  22. Samsonova Z. V., Shchelokova O. S., Ivanova N. L., Rubtsova M. Y., Egorov A. M. // Appl. Biochem. Microbiol. 2005. V. 41. № 6. P. 589–595. https://doi.org/10.1007/s10438-005-0107-4
  23. Bacigalupo M. A., Meroni G., Secundo F., Lelli R. // Talanta. 2008. V. 77. № 1. P. 126–130. https://doi.org/10.1016/j.talanta.2008.05.057
  24. Jiao S. N., Wang P., Zhao G. X., Zhang H. C., Liu J., Wang J. P. // J. Environ. Sci. Health B. 2013. V. 48. № 6. P. 486–494. https://doi.org/10.1080/03601234.2013.761908
  25. Zeng K., Zhang J., Wang Y., Wang Z. H., Zhang S. X., Wu C. M. et al. // Biomed. Environ. Sci. 2013. V. 26. № 2. P. 100–109. https://doi.org/10.3967/0895-3988.2013.02.004
  26. Peng, J., Cheng, G., Huang, L., Wang Y., Hao H., Peng D. et al. // Anal. Bioanal. Chem. 2013. V. 405. P. 8925–8933. https://doi.org/10.1007/s00216-013-7311-5
  27. Serchenya T. S., Harbachova I. V., Sviridov O. V. // Russ. J. Bioorg. Chem. 2022. V. 48. № 1. P. 85–95. https://doi.org/10.1134/S1068162022010125
  28. Shanin I. A., Eremin S. A., Zvereva E. A., Zherdev A. V., Dzantiev B. B., Sviridov O. V. // Appl. Biochem. Microbiol. 2019. V. 55. № 5. P. 563–569. https://doi.org/10.1134/S0003683819050132
  29. Kuprienko O. S., Serchenya T. S., Vashkevich I. I., Harbachova I. V., Zilberman A. I., Sviridov O. V. // Russ. J. Bioorg. Chem. 2022. V. 48. № 1. P. 105–114. https://doi.org/10.1134/S106816202201006X
  30. Sotnikov D. V., Zherdev A. V., Zvereva E. A., Eremin S. A., Dzantiev B. B. // Appl. Sci. 2021. V. 11. № 14. Article 6581. https://doi.org/10.3390/app11146581
  31. Boutten B., Ezan E., Mamas S., Dray F. // Clin. Chem. 1991. V. 37. № 3. P. 394–397. https://doi.org/10.1093/clinchem/37.3.394
  32. Sulea T., Rohani N., Baardsnes J., Corbeil C. R., Deprez C., Cepero-Donates Y. et al. // MAbs. 2020. Vol. 12. № 1. Article 1682866. https://doi.org/10.1080/19420862.2019.1682866
  33. Miller J. J., Valdes R. // Clin. Chem. 1991. V. 37. № 2. P. 144–153. https://doi.org/10.1093/clinchem/37.2.144
  34. Sheehan C., He J., Smith M. The Immunoassay Handbook. 4 Ed. /Ed. D. Wild. Amsterdam: Elsevier, 2013. P. 395–402. https://doi.org/10.1016/B978-0-08-097037-0.00026-9
  35. Komova N. S., Berlina A. N., Zherdev A. V., Dzantiev B. B. // Orient. J. Chem. 2020. V. 36. № 1. P. 21–25. https://doi.org/10.13005/ojc/360103

补充文件

附件文件
动作
1. JATS XML
2. Fig.1

下载 (13KB)
3. Fig.2

下载 (14KB)
4. Fig.3

下载 (15KB)
5. Fig.4

下载 (16KB)
6. Fig.5

下载 (15KB)
7. Fig.6

下载 (17KB)
8. Fig.7

下载 (16KB)
9. Fig. 1. Inhibition curves of binding of the Amp-HRP conjugate to PAb in the presence of penicillin G (1), ampicillin (2) or amoxicillin (3) during incubation for 1 h at temperatures of 4 (a), 25 (b) or 37°C (c).

下载 (187KB)
10. Fig. 2. Inhibition curves of binding of the Amp-HRP conjugate to PAb in the presence of penicillin G (1), ampicillin (2) or amoxicillin (3) during incubation for 2 h (a) or 18 h (b) at 4 °C.

下载 (148KB)
11. Fig. 3. IC50 values ​​for penicillin G (1) and amoxicillin (2) using different penicillin-HRP conjugates (incubation for 1 h at 4°C). I — Amp-HRP; II — Amox-HRP; III — Amp-Ad-HRP; IV — Amox-pFT-HRP.

下载 (54KB)
12. Fig. 4. Completeness of detection of penicillin group antibiotics (%) added to milk samples. The values ​​obtained by ELISA (1) and recalculated taking into account the PR of specific PAbs (2) are presented. I — penicillin G; II — ampicillin; III — amoxicillin; IV — oxacillin; V — cloxacillin; VI — dicloxacillin; VII — nafcillin.

下载 (74KB)

版权所有 © Russian Academy of Sciences, 2024