Tensors with Constant Components in the Constitutive Equations of a Hemitropic Micropolar Solids

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The present paper is devoted to elastic potentials and the constitutive equations of mechanics of anisotropic micropolar solids, the kinematics of which can be specified by two independent vector fields: a contravariant field of translational displacements and a contravariant pseudovector field of microrotations of weight +1. The quadratic stress potential is represented by three constitutive tensors of the fourth rank, two of which are pseudotensor in nature and can be assigned weights –2 and –1. Such a solid is completely specified by the 171st micropolar elastic modulus. The main attention is focused on the model of a hemitropic (half-isotropic, demitropic) micropolar elastic solid characterized by nine constitutive constants. The components of the constitutive pseudo-tensor of weight ‒1 turn out to be sensitive to mirror reflection transformations in three-dimensional space. A peculiar algebraic structure of the constitutive tensors of a hemitropic solid, more precisely, their absolute analogues obtained by multiplying by integer powers of a pseudoscalar unity, is studied. It is shown that these tensors can always be constructed from isomers (isomer) of a tensor with constant components (generally insensitive to any transformations of the coordinate system) and one additional fourth-rank tensor constructed, in turn, from the components of the metric tensor.

作者简介

Yu. Radayev

Ishlinsky Institute for Problems in Mechanics RAS, 119526, Moscow, Russia

编辑信件的主要联系方式.
Email: radayev@ipmnet.ru
Россия, Москва

参考

  1. Парс Л.А. Аналитическая динамика. М.: Наука, 1971. 636 с.
  2. Cosserat E., Cosserat F. Théorie des corps déformables. Paris: Herman et Fils, 1909. 226 p.
  3. Nowacki W. Theory of asymmetric elasticity. Oxford: Pergamon Press, 1986. 383 p.
  4. Гуревич Г.Б. Основы теории алгебраических инвариантов. М., Л.: Гостехтеоретиздат. 1948. 408 с.
  5. Радаев Ю.Н. Правило множителей в ковариантных формулировках микрополярных теорий механики континуума // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки. 2018. Т. 22. № 3. С. 504–517. https://doi.org/10.14498/vsgtu1635
  6. Kovalev V.A., Murashkin E.V., Radayev Y.N. On the Neuber theory of micropolar elasticity. A pseudotensor formulation // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки. 2020. Т. 24. № 4. С. 752–761. https://doi.org/10.14498/vsgtu1799
  7. Murashkin E.V., Radayev Y.N. An algebraic algorithm of pseudotensors weights eliminating and recovering // Mech. Solids. 2022. V. 57. № 6. P. 1416–1423. https://doi.org/10.3103/s0025654422060085
  8. Murashkin E.V., Radaev Y.N. On theory of oriented tensor elements of area for a micropolar continuum immersed in an external plane space // Mech. Solids. 2022. V. 57. № 2. P. 205–213. https://doi.org/10.3103/s0025654422020108
  9. Мурашкин Е.В., Радаев Ю.Н. К теории гемитропных тензоров четвертого ранга в трехмерных пространствах Евклида // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки. 2022. Т. 26. № 3. С. 592–602. https://doi.org/10.14498/vsgtu1941
  10. Мурашкин Е.В., Радаев Ю.Н. О двух основных естественных формах потенциала асимметричных тензоров силовых и моментных напряжений в механике гемитропных тел // Вестн. Чув. гос. пед. универс. им. И.Я. Яковлева. Серия: мех. предельного состояния. 2022. № 3. С. 86–100. https://doi.org/10.37972/chgpu.2022.53.3.010
  11. Jeffreys H. Cartesian tensors. Cambridge: Cambridge University Press, 1969. 93 p.
  12. Radayev Y.N. Two-point rotations in geometry of finite deformations // Theory of Elasticity and Creep. Advanced Structured Materials. V. 185. Springer, 2023. P. 275–283. https://doi.org/10.1007/978-3-031-18564-9_20

补充文件

附件文件
动作
1. JATS XML

版权所有 © Ю.Н. Радаев, 2023