Influence of Surface on the Development and Dynamics of Droplet Coalescence in Optical Cells at the Isotropic Liquid–Liquid Crystal Phase Transition

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The work presents results of studies of coalescence of nematic liquid crystal droplets surrounded by isotropic liquid. With the aid of high-resolution optical microscopy and high-speed video recording coalescence of droplets in thin optical cells has been studied. Cells with planar and homeotropic boundary conditions for the liquid crystal director were used. It is shown that depending on boundary conditions at the cell surface the coalescence process at the initial stage develops in a different manner. In a cell with planar boundary conditions at the initial stage we observe linear dependence of the width of the neck between droplets on time. At subsequent stages the influence of surface leads to slower dynamics. The final stage of coalescence is characterized by exponential relaxation of the droplet to the equilibrium shape. At coalescence of droplets whose diameter exceeds the cell thickness, we observed an intermediate stage with power-law dependence of the neck width on time. The duration of this stage increases with increasing the droplet size. Capillary velocity and characteristic times at different stages of coalescence were determined. Characteristic times for the initial stage increase linearly with increasing the droplet size. For the middle stage the characteristic times increase proportionally to the third power of the droplet radius.

Негізгі сөздер

Авторлар туралы

P. Dolganov

Osipyan Institute of Solid State Physics RAS

Хат алмасуға жауапты Автор.
Email: pauldol@issp.ac.ru
Ресей, Chernogolovka, 142432

N. Spiridenko

Osipyan Institute of Solid State Physics RA

Email: pauldol@issp.ac.ru
Ресей, Chernogolovka, 142432

V. Dolganov

Osipyan Institute of Solid State Physics RA

Email: pauldol@issp.ac.ru
Ресей, Chernogolovka, 142432

Әдебиет тізімі

  1. Frenkel J. // J. Phys. (Moscow). 1945. V. 9. P. 385.
  2. Hopper R.W. // J. Am. Ceram. Soc. 1984. V. 67. P. 262. https://www.doi.org/10.1111/j.1151-2916.1984.tb19692.x
  3. Menchaca-Rocha A., Martinez-Davalos A., Nunez R., Popinet S., Zaleski S. // Phys. Rev. E. 2021. V. 63. P. 046309. https://www.doi.org/10.1103/PhysRevE.63.046309
  4. Wu M., Cubaud T., Ho C.H. // Phys. Fluids. 2004. V. 16. P. L51. https://www.doi.org/10.1063/1.1756928
  5. Aarts D.G.A.L., Lekkerkerker H.N.W., Guo G.H., Wegdam D.B. // Phys. Rev. Lett. 2005. V. 95. P. 164503. https://www.doi.org/10.1103/PhysRevLett.95.164503
  6. Yao W., Maris H.J., Pennington P., Seidel G.M. // Phys. Rev. E. 2005. V. 71. P. 016309. https://www.doi.org/10.1103/PhysRevE.71.016309
  7. Case S.C., Nagel R.S. // Phys. Rev. Lett. 2008. V. 100. P. 084503. https://www.doi.org/10.1103/PhysRevLett.100.084503
  8. Paulsen J.D., Burton J.C., Nagel S.R. // Phys. Rev. Lett. 2011. V. 106. P. 114501. https://www.doi.org/10.1103/PhysRevLett.106.114501
  9. Paulsen J.D., Carmigniani R., Kannan A., Burton J.C., Nagel S.R. // Nat. Commun. 2014. V. 5. P. 3182. https://www.doi.org/10.1038/ncomms4182
  10. Rahman M., Lee W., Iyer A., Williams S.J. // Phys. Fluids. 2019. V. 31. P. 012104. https://www.doi.org/10.1063/1.5064706
  11. Shuravin N.S., Dolganov P.V., Dolganov V.K. // Phys. Rev. E. 2019. V. 99. P. 062702. рttps://www.doi.org/10.1103/PhysRevE.99.062702
  12. Nguyen Z.H., Harth K., Goldfain A.M., Park C.S., Maclennan J.E., Glaser M.A., Clark N.A. // Phys. Rev. Res. 2021. V. 3. P. 033143. https://www.doi.org/10.1103/PhysRevResearch. 3.033143
  13. Klopp C., Eremin A. // Langmuir. 2020. V. 36. P. 10615. https://www.doi.org/10.1021/acs.langmuir.0c02139
  14. Delabre U., Cazabat A.M. // Phys. Rev. Lett. 2010. V. 104. P. 227801. https://www.doi.org/10.1103/PhysRevLett.104.227801
  15. Hack A.M., Tewes W., Xie Q., Datt C., Harth K., Harting J., Snoeijer J.H. // Phys. Rev. Lett. 2020. V. 124. P. 194502. https://www.doi.org/10.1103/PhysRevLett.124.194502
  16. Ryu S., Zhang H., Anuta U.J. // Micromachines. 2023. V. 14. P. 2046. https://www.doi.org/10.3390/mi14112046
  17. Beaty E., Lister J.R. // J. Fluid Mech. 2024. V. 984. P. A77. https://www.doi.org/10.1017/jfm.2024.295
  18. Eggers J., Sprittles J.E., Snoeijer J.H. // Annual Review of Fluid Mechanics. 2024. V. 57. https://www.doi.org/10.1146/annurev-fluid-121021044919
  19. Yokota M., Okumura K. // PNAS 2011. V. 108. P. 6395. https://www.doi.org/10.1073/pnas1017112108
  20. Oswald P., Poy G. // Phys. Rev. E. 2015. V. 92. P. 062512. https://www.doi.org/10.1103/PhysRevE.92.062512
  21. Dolganov P.V., Zverev A.S., Baklanova K.D., Dolganov V.K. // Phys. Rev. E. 2021. V. 104. P. 014702. https://www.doi.org/10.1103/PhysRevE.104.014702
  22. Долганов П.В., Зверев А.С., Спириденко Н.А., Бакланова К.Д., Долганов В.К. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2022. № 8. C. 30.
  23. Dolganov P.V., Spiridenko N.A., Zverev A.S. // Phys. Rev. E. 2024. V. 109. P. 014702. https://www.doi.org/ 10.1103/PhysRevE.109.014702
  24. Долганов П.В., Спириденко Н.А., Долганов В.К., Кац Е.И., Бакланова К.Д. // Письма в ЖЭТФ. 2023. Т. 118. С. 118. https://www.doi.org/10.31857/S1234567823140094
  25. Де Жен П.-Ж. Физика жидких кристаллов, пер. с англ. М.: Мир, 1977. 400 с.
  26. Faetti S., Palleschi V. // J. Chem. Phys. 1984. V. 81. P. 6254. https://www.doi.org/10.1063/1.447582
  27. Kim Y.K., Shiyanovskii S.V., Lavrentovich O.D. // J. Phys. Condens. Matter. 2013. V. 25. P. 404202. https://www.doi.org/10.1088/0953-8984/25/40/ 404202
  28. Haputhanthrige N.P., Paladugu S., Lavrentovich M.O., Lavrentovich O.D. // Phys. Rev. E. 2024. V. 109. P. 064703. https://www.doi.org/10.1103/PhysRevE.109.064703
  29. Eggers J. // Rev. Mod. Phys. 1997. V. 69. P. 865. https://www.doi.org/10.1103/RevModPhys.69.865
  30. McKinley G.H., Tripati A. // J. Rheology. 2000. V. 44. P. 653. https://www.doi.org/10.1122/1.551105
  31. Eggers J., Villermaux E. // Rep. Prog. Phys. 2008. V. 71. P. 036601. https://www.doi.org/10.1088/0034-4885/71/3/036601

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025