Influence of Non-Uniform Thickness of Insulating Film along the Cathode Surface on its Heating in a Glow Gas Discharge

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A model of the cathode layer of a glow gas discharge is formulated in the presence of a thin insulating film on the cathode, the thickness of which varies in different areas of its surface, and on some parts of the surface, it may be absent. The model takes into account ion-induced electron emission from the cathode surface, thermal-field electron emission from the cathode substrate into the film, and thermal electron emission from areas of the cathode surface without a film. It is shown that when the cathode is heated, the effective electron emission coefficient of the cathode and the discharge current density decrease, since this reduces the electric field strength in the film, which provides the current density of thermal field electron emission from the cathode substrate into the film necessary to maintain the discharge. As a result, the film emission efficiency, the cathode effective ion-electron emission coefficient and the discharge current density are decreased. Therefore, when the insulating film is on the entire cathode surface, the glow discharge does not transform into an arc discharge for a long time. If there is no insulating film on some part of it, then after cathode heating to a sufficiently high temperature, thermal emission of electrons starts from it. The electrons leave the cathode surface, increase its effective coefficient of electron emission, and discharge current density. This causes more intensive cathode heating and accelerates transition from glow discharge to an arc discharge.

Авторлар туралы

G. Bondarenko

HSE University

Хат алмасуға жауапты Автор.
Email: gbondarenko@hse.ru
Ресей, Moscow, 101000

M. Fisher

Bauman Moscow State Technical University

Email: fishermr@bmstu.ru
Ресей, Moscow, 105005

V. Kristya

Bauman Moscow State Technical University

Email: kristya@bmstu.ru
Ресей, Moscow, 105005

Әдебиет тізімі

  1. Zissis G., Kitsinelis S. // J. Phys. D. 2009. V. 42. № 17. Р. 173001. https://doi.org/10.1088/0022-3727/42/17/173001
  2. Samukawa S., Hori M., Rauf S., Tachibana K., Bruggeman P., Kroesen G., Whitehead J.C., Murphy A.B., Gutsol A.F., Starikovskaia S. // J. Phys. D. 2012. V. 45. № 25. Р. 253001. https://doi.org/10.1088/0022-3727/45/25/253001
  3. Schwieger J., Baumann B., Wolff M., Manders F., Suijker J. // J. Phys.: Conf. Ser. 2015. V. 655. Р. 012045. https://doi.org/10.1088/1742-6596/655/1/012045
  4. Райзер Ю.П. Физика газового разряда. Долгопрудный: ИД “Интеллект”, 2009. 736 с.
  5. Saifutdinov A.I. // Plasma Sources Sci. Tech. 2022. V. 31. № 9. Р. 094008. https://doi.org/10.1088/1361-6595/ac89a7
  6. Byszewski W.W., Li Y.M., Budinger A.B., Gregor P.D. // Plasma Sources Sci. Tech. 1996. V. 5. № 4. P. 720. https://doi.org/10.1088/0963-0252/5/4/014
  7. Hadrath S., Beck M., Garner R.C., Lieder G., Ehlbeck J. // J. Phys. D. 2007. V. 40. № 1. P. 163. https://doi.org/10.1088/0022-3727/40/1/009
  8. Modinos A. Field, Thermionic, and Secondary Electron Emission Spectroscopy. N.Y.: Plenum Press, 1984. 376 p.
  9. Егоров Н.В., Шешин Е.П. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2017. № 3. C. 5. https://doi.org/10.7868/S0207352817030088
  10. Ptitsin V.E. // J. Phys.: Conf. Ser. 2011. V. 291. Р. 012019. https://doi.org/10.1088/1742-6596/291/1/012019
  11. Venkattraman A. // Appl. Phys. Lett. 2014. V. 104. № 19. Р. 194101. https://doi.org/10.1063/1.4876606
  12. Haase J.R., Go D.B. // J. Phys. D. 2016. V. 49. № 5. Р. 055206. https://doi.org/10.1088/0022-3727/49/5/055206
  13. Benilov M.S., Benilova L.G. // J. Appl. Phys. 2013. V. 114. № 6. Р. 063307. https://doi.org/10.1063/1.4818325
  14. Anders A. // Thin Solid Films. 2006. V. 502. P. 22. https://doi.org/10.1016/j.tsf.2005.07.228
  15. Riedel M., Düsterhöft H., Nagel F. // Vacuum. 2001. V. 61. № 2–4. P. 169. https://doi.org/10.1016/S0042-207X(01)00112-9
  16. Bondarenko G.G., Fisher M.R., Kristya V.I., Prassitski V.V. // Vacuum. 2004. V. 73. № 2. P. 155. https://doi.org/10.1016/j.vacuum.2003.12.004
  17. Hadrath S., Ehlbeck J., Lieder G., Sigeneger F. // J. Phys. D. 2005. V. 38. № 17. P. 3285. https://doi.org/10.1088/0022-3727/38/17/S33
  18. Suzuki M., Sagawa M., Kusunoki T., Nishimura E., Ikeda M., Tsuji K. // IEEE Trans. ED. 2012. V. 59. P. 2256. https://doi.org/10.1109/TED.2012.2197625
  19. Nijdam S., Desai K.V., Park S.-J., Sun P.P., Sakai O., Lister G., Eden J.G. // Plasma Sources Sci. Tech. 2022. V. 31. № 12. Р. 123001. https://doi.org/10.1088/1361-6595/ac8448
  20. Bondarenko G.G., Fisher M.R., Kristya V.I. // Vacuum. 2016. V. 129. P. 188. https://doi.org/10.1016/j.vacuum.2016.01.008
  21. Holgate J.T., Coppins M. // Phys. Rev. Appl. 2017. V. 7. № 4. Р. 044019. https://doi.org/10.1103/PhysRevApplied.7.044019
  22. Jensen K.L. // J. Appl. Phys. 2019. V. 126. № 6. Р. 065302. https://doi.org/10.1063/1.5109676
  23. Bondarenko G.G., Kristya V.I., Savichkin D.O. // Vacuum. 2018. V. 149. P. 114. https://doi.org/10.1016/j.vacuum.2017.12.028
  24. Bondarenko G.G., Fisher M.R., Myo Thi Ha, Kristya V.I. // Russ. Phys. J. 2019. V. 62. № 1. P. 82. https://doi.org/10.1007/s11182-019-01686-z
  25. Bondarenko G.G., Fisher M.R., Kristya V.I. // Bull. Russ. Acad. Sci.: Phys. 2024. V. 88. № 4. P. 464. https://doi.org/10.1134/S1062873823706074
  26. Woodworth J.R., Aragon B.P., Hamilton T.W. // Appl. Phys. Lett. 1997. V. 70. № 15. P. 1947. https://doi.org/10.1063/1.118814
  27. Kim D., Economou D.J. // J. Appl. Phys. 2003. V. 94. № 5. P. 2852. https://doi.org/10.1063/1.1597943
  28. Kim D., Economou D.J. // J. Appl. Phys. 2004. V. 95. № 7. P. 3311. https://doi.org/10.1063/1.1652249
  29. Бондаренко Г.Г., Кристя В.И., Йе Наинг Тун // Изв. вузов. Физика. 2015. Т. 58. № 9. С. 99.
  30. Кристя В.И., Мьо Ти Ха, Фишер М.Р. // Изв. РАН. Сер. физ. 2020. Т. 84. № 6. С. 846. https://doi.org/10.31857/S0367676520060149
  31. Бондаренко Г.Г., Кристя В.И., Мьо Ти Ха, Фишер М.Р. // Поверхность. Рентген., синхротрон. и нейтрон. исслед. 2022. № 8. С. 25. https://doi.org/10.31857/S1028096022080039
  32. Phelps A.V., Petrović Z.Lj. // Plasma Sources Sci. Technol. 1999. V. 8. № 3. P. R21. https://doi.org/10.1088/0963-0252/8/3/201
  33. Forbes R.G., Edgcombe C.J., Valdrè U. // Ultramicroscopy. 2003. V. 95. P. 57. https://doi.org/10.1016/S0304-3991(02)00297-8
  34. Hourdakis E., Bryant G.W., Zimmerman N.M. // J. Appl. Phys. 2006. V. 100. № 12. Р. 123306. https://doi.org/10.1063/1.2400103
  35. Крютченко О.Н., Маннанов А.Ф., Носов А.А., Степанов В.А., Чиркин М.В. // Поверхность. Физика, химия, механика. 1994. № 6. С. 93.
  36. Xu N.S., Chen J., Deng S.Z. // Appl. Phys. Lett. 2000. V. 76. № 17. P. 2463. https://doi.org/10.1063/1.126377
  37. Bondarenko G.G., Fisher M.R., Kristya V.I., Bondariev V. // High Temperature Material Proc. 2022. V. 26. № 1. P. 17. https://doi.org/10.1615/HighTempMatProc.2021041820
  38. Hancox R. // Br. J. Appl. Phys. 1960. V. 11. № 10. P. 468. https://doi.org/10.1088/0508-3443/11/10/304
  39. Guile A.E., Hitchcock A.H. // J. Phys. D. 1975. V. 8. № 6. P. 663. https://doi.org/10.1088/0022-3727/8/6/009
  40. Puchkarev V.F. Mesyats G.A. // J. Appl. Phys. 1995. V. 78. № 9. P. 5633. https://doi.org/10.1063/1.359687

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025