Electron beam modification of boride diffusion layers on the surface of steels 45 and U10

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We present the results of surface hardening of samples made of steels 45 and U10 by complex saturation with boron and copper, as well as subsequent processing of the layer with an electron beam using a source with a plasma cathode in order to increase a number of physical and mechanical properties of boride layers, in particular ductility and wear resistance. A comparative analysis of the structure of the diffusion layer after borocoppering and subsequent modification of this layer with an electron beam was carried out. The morphology of the diffusion layer was analyzed. Microhardness, elemental and phase compositions were studied. The plasticity of the resulting diffusion layers was evaluated before and after electron beam processing.

全文:

受限制的访问

作者简介

S. Lysykh

Institute of Physical Materials Science SB RAS

编辑信件的主要联系方式.
Email: lysyh.stepa@yandex.ru
俄罗斯联邦, Ulan-Ude

P. Moskvin

Institute of High Current Electronics SB RAS

Email: lysyh.stepa@yandex.ru
俄罗斯联邦, Tomsk

М. Vorobyov

Institute of High Current Electronics SB RAS

Email: lysyh.stepa@yandex.ru
俄罗斯联邦, Tomsk

V. Kornopoltsev

The Baikal Institute of Nature Management SB RAS

Email: lysyh.stepa@yandex.ru
俄罗斯联邦, Ulan-Ude

U. Mishigdorzhiyn

Institute of Physical Materials Science SB RAS

Email: lysyh.stepa@yandex.ru
俄罗斯联邦, Ulan-Ude

Yu. Kharaev

East Siberia State University of Technology and Management SB RAS

Email: lysyh.stepa@yandex.ru
俄罗斯联邦, Ulan-Ude

А. Milonov

Institute of Physical Materials Science SB RAS

Email: lysyh.stepa@yandex.ru
俄罗斯联邦, Ulan-Ude

参考

  1. Хараев Ю.П., Грешилов А.Д., Куркина Л.А., Федотов Н.И., Бутуханов В.А. // Обработка металлов (технология–оборудование–инструменты). 2012. № 2 (55). С. 62.
  2. Одарченко В.И., Казначеева Д.А., Щербаков В.Г. // XXIII Туполевские чтения (Школа молодых ученых). Т. 1. Казань: Изд-во КНИТУ-КАИ, 2017. С. 328.
  3. Гуляшинов П.А. // Обработка металлов (технология–оборудование–инструменты). 2022. № 2 (24). С. 91. http://doi.org/10.17212/1994-6309-2022-24.2-91-101
  4. Мустафина Т.В., Мустафин Г.А., Марширов И.В. // Ползуновский вестн. 2015. № 3. С. 15. http://elib.altstu.ru/journals/Files/archive/pv/2015/PV_3_2015.pdf
  5. Крукович М.Г. // Евразийский союз ученых. 2020. № 10 (79). С. 30. http://doi.org/10.31618/ESU/2413-9335.2020.6.79.1075
  6. Комаров Д.В., Коновалов С.В., Жуков Д.В., Виноградов И.С., Панченко И.А. // Ползуновский вестн. 2022. № 3. С. 204. http://doi.org/10.25712/ASTU.2072-8921.2022.03.028
  7. Астрашаб Е.В., Щербаков В.Г. // XXIII Туполевские чтения (Школа молодых ученых). Т. 1. Казань: Изд-во КНИТУ-КАИ, 2017. С. 230.
  8. Корнопольцев В.Н., Мосоров В.И. // Актуальные проблемы в машиностроении. 2014. № 1. С. 403.
  9. Галынская Н.А., Кухарева Н.Г., Нисс В.С., Петрович С.Н. // Вестн. БНТУ. 2011. № 4. С. 15.
  10. Devyatkov V.N., Koval N.N., Schanin P.M., Grigoryev V.P., Koval T.V. // Laser and Particle Beams. 2003. V. 21. P. 243. http://doi.org/10.1017/S026303460321212X
  11. Vorobyov M.S., Moskvin P.V., Shin V.I., Koval N.N., Ashurova K.T., Doroshkevich S.Yu., Devyatkov V.N., Torba M.S., Levanisov V.A. // Письма в ЖТФ. 2021. Т. 47. Вып. 10. С. 38. http://doi.org/10.21883/PJTF.2021.10.50972.18719
  12. Гурьев А.М., Иванов С.Г., Грешилов А.Д., Земляков С.А. // Обработка металлов. 2011. № 3 (52). С. 35.
  13. Nokhrina O.I., Gizatulin R.A., Golodova M.A., Proshunin I.E., Valuev D.V., Martyushev N.V., Karlina A.I. // Metallurgist. 2022. V. 65. № 11–12. P. 1429. https://doi.org/10.1007/s11015-022-01289-z
  14. Mishigdorzhiyn U., Chen Y., Ulakhanov N., Liang H. // Lubricants. 2020. V. 8. Iss. 3. P. 26. http://doi.org/10.3390/lubricants8030026
  15. Шевчук Е.П., Плотников В.А., Бектасова Г.С. // Изв. АлтГУ. Физика. 2021. № 1 (117). C. 64. https://doi.org/10.14258/izvasu(2021)1-10
  16. Скуднов В.А. Предельные пластические деформации металлов. М.: Металлургия, 1989. 176 с.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Scheme of processing in a pulsed electron-beam setup (a) and external appearance of the “SOLO” setup (ISE SB RAS) (b): 1 — plasma cathode; 2 — electron beam; 3 — lens; 4 — quartz glass; 5 — fiber optic cable; 6 — sample; 7 — thermocouple; 8 — manipulator table; 9 — multimeter; 10 — high-speed infrared pyrometer; 11 — oscilloscope.

下载 (45KB)
3. Fig. 2. Characteristic oscillograms of the discharge current Id (1) of the plasma cathode, the current in the accelerating gap circuit of the electron source Ig (2) and the output signal of the high-speed pyrometer T [°C] (3): T = 300 + 400ncells, where ncells is the number of cells.

下载 (15KB)
4. Fig. 3. SEM image of the diffusion layer of steels 45 (a) and U10 (b) after complex surface saturation with boron and copper.

下载 (76KB)
5. Fig. 4. SEM image of a sample of grade 45 steel after copper boron plating followed by electron beam treatment (a) and an enlarged area highlighted by a square (b).

下载 (84KB)
6. Fig. 5. SEM image of a U10 steel sample after copper boron plating followed by electron beam treatment (a) and an enlarged area highlighted by a square (b).

下载 (84KB)
7. Fig. 6. Distribution of microhardness of samples of steels 45 (1, 2) and U10 (3, 4) after chemical-thermal treatment (1, 3) and copper boron plating followed by electron beam treatment (2, 4).

下载 (15KB)
8. Fig. 7. Diffraction patterns of steel samples 45 (a) and U10 (b).

下载 (26KB)
9. Fig. 8. SEM images of steels 45 (a, c) and U10 (b, d) during measurement of ultimate ductility after: a – boriding; b – copper boron plating; c, d – copper boron plating followed by electron beam processing.

下载 (93KB)

版权所有 © Russian Academy of Sciences, 2024