Translation of Circular RNAs: Functions of Translated Products and Related Bioinformatics Approaches


Cite item

Full Text

Abstract

Over the past two decades, studies have discovered a special form of alternative splicing (AS) that produces a circular form of RNA. This stands in contrast to normal AS, which produces a linear form of RNA. Although these circRNAs have garnered considerable attention in the scientific community for their biogenesis and functions, the focus of these studies has been on the regulatory role of circRNAs with the assumption that circRNAs are non-coding. As non-coding RNAs, they may regulate mRNA transcription, tumor initiation, and translation by sponging miRNAs and RNA-binding proteins (RBPs). In addition to these regulatory roles of circRNAs, however, recent studies have provided strong evidence for their translation. The translation of circRNAs is expected to have an important role in promoting cancer cell growth and activating molecular pathways related to cancer development. In some cases, the translation of circRNAs is shown to be efficiently driven by an internal ribosome entry site (IRES). The development of a computational tool for identifying and characterizing the translation of circRNAs using high-throughput sequencing and IRES increases identifiable proteins translated from circRNAs. In turn, it has a substantial impact on helping researchers understand the functional role of proteins derived from circRNAs. New web resources for aggregating, cataloging, and visualizing translational information of circRNAs derived from previous studies have been developed. In this paper, general concepts of circRNA, circRNA biogenesis, translation of circRNA, and existing circRNA tools and databases are summarized to provide new insight into circRNA studies.

About the authors

Jae Hwang

Department of Computer Science and Engineering, University of Louisville

Email: info@benthamscience.net

Tae Kook

Department of Computer Science and Engineering, University of Louisville

Email: info@benthamscience.net

Sydney Paulus

Department of Computer Science and Engineering, University of Louisville

Email: info@benthamscience.net

Juw Park

Department of Computer Science and Engineering, University of Louisville

Author for correspondence.
Email: info@benthamscience.net

References

  1. Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci 1976; 73(11): 3852-6. doi: 10.1073/pnas.73.11.3852 PMID: 1069269
  2. Hsu MT, Coca-Prados M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature 1979; 280(5720): 339-40. doi: 10.1038/280339a0 PMID: 460409
  3. (a) Nigro JM, Cho KR, Fearon ER, et al. Scrambled exons. Cell 1991; 64(3): 607-13. doi: 10.1016/0092-8674(91)90244-S; (b) Westholm JO, Miura P, Olson O, et al. Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep 2014; 9(5): 1966-80. doi: 10.1016/j.celrep.2014.10.062
  4. Grabowski PJ, Zaug AJ, Cech TR. The intervening sequence of the ribosomal RNA precursor is converted to a circular RNA in isolated nuclei of tetrahymena. Cell 1981; 23(2): 467-76. doi: 10.1016/0092-8674(81)90142-2 PMID: 6162571
  5. (a) Bailleul B. During in vivo maturation of eukaryotic nuclear mRNA, splicing yields excised exon circles Nucleic Acids Res 1996; 24(6): 1015-9. doi: 10.1093/nar/24.6.1015; (b) Cocquerelle C, Mascrez B, Hetuin D, Bailleul B. Mis-splicing yields circular RNA molecules. FASEB J 1993; 7(1): 155-60. doi: 10.1096/fasebj.7.1.7678559; (c) Cocquerelle C, Daubersies P, Majerus MA, Kerckaert JP, Bailleul B. Splicing with inverted order of exons occurs proximal to large introns. EMBO J 1992; 11(3): 1095-8. doi: 10.1002/j.1460-2075.1992.tb05148.x
  6. Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013; 495(7441): 333-8. doi: 10.1038/nature11928 PMID: 23446348
  7. Li Z, Huang C, Bao C, et al. Erratum: Corrigendum: Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 2017; 24(2): 194. doi: 10.1038/nsmb0217-194a PMID: 28170000
  8. Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013; 19(2): 141-57. doi: 10.1261/rna.035667.112 PMID: 23249747
  9. Kelly S, Greenman C, Cook PR, Papantonis A. Exon skipping is correlated with exon circularization. J Mol Biol 2015; 427(15): 2414-7. doi: 10.1016/j.jmb.2015.02.018 PMID: 25728652
  10. Li Z, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 2015; 22(3): 256-64. doi: 10.1038/nsmb.2959 PMID: 25664725
  11. Conn SJ, Pillman KA, Toubia J, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell 2015; 160(6): 1125-34. doi: 10.1016/j.cell.2015.02.014 PMID: 25768908
  12. (a) Suzuki H, Zuo Y, Wang J, Zhang M Q, Malhotra A, Mayeda A. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res 2006; 34(8): e63. doi: 10.1093/nar/gkl151 ; (b) Gardner EJ, Nizami ZF, Talbot CC, Gall JG. Stable intronic sequence RNA (sisRNA), a new class of noncoding RNA from the oocyte nucleus of Xenopus tropicalis. Genes Dev 2012; 26(22): 2550-9. doi: 10.1101/gad.202184.112
  13. Lu Z, Filonov GS, Noto JJ, et al. Metazoan tRNA introns generate stable circular RNAs in vivo. RNA 2015; 21(9): 1554-65. doi: 10.1261/rna.052944.115 PMID: 26194134
  14. Tang TH, Rozhdestvensky TS, d’Orval BC, et al. RNomics in Archaea reveals a further link between splicing of archaeal introns and rRNA processing. Nucleic Acids Res 2002; 30(4): 921-30. doi: 10.1093/nar/30.4.921 PMID: 11842103
  15. Vo JN, Cieslik M, Zhang Y, et al. The landscape of circular RNA in cancer. Cell 2019; 176(4): 869-881.e13. doi: 10.1016/j.cell.2018.12.021 PMID: 30735636
  16. Guarnerio J, Bezzi M, Jeong JC, et al. Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell 2016; 166(4): 1055-6. doi: 10.1016/j.cell.2016.07.035 PMID: 27518567
  17. Rybak-Wolf A, Stottmeister C, Glažar P, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 2015; 58(5): 870-85. doi: 10.1016/j.molcel.2015.03.027 PMID: 25921068
  18. (a) Tang W, Ji M, He G, et al. Silencing CDR1as inhibits colorectal cancer progression through regulating microRNA-7. Onco Targets Ther 2017; 10: 2045-56. doi: 10.2147/OTT.S131597 ; (b) Yao W, Li Y, Han L, et al. The CDR1as/miR-7/TGFBR2 axis modulates EMT in silica-induced pulmonary fibrosis. Toxicol Sci 2018; 166(2): 465-78. doi: 10.1093/toxsci/kfy221
  19. Koopman P, Münsterberg A, Capel B, Vivian N, Lovell-Badge R. Expression of a candidate sex-determining gene during mouse testis differentiation. Nature 1990; 348(6300): 450-2. doi: 10.1038/348450a0 PMID: 2247150
  20. Ma J, Du WW, Zeng K, et al. An antisense circular RNA circSCRIB enhances cancer progression by suppressing parental gene splicing and translation. Mol Ther 2021; 29(9): 2754-68. doi: 10.1016/j.ymthe.2021.08.002 PMID: 34365033
  21. Wu N, Yuan Z, Du KY, et al. Translation of yes-associated protein (YAP) was antagonized by its circular RNA via suppressing the assembly of the translation initiation machinery. Cell Death Differ 2019; 26(12): 2758-73. doi: 10.1038/s41418-019-0337-2 PMID: 31092884
  22. Gao X, Xia X, Li F, et al. Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR–STAT3 signalling. Nat Cell Biol 2021; 23(3): 278-91. doi: 10.1038/s41556-021-00639-4 PMID: 33664496
  23. Chen CK, Cheng R, Demeter J, et al. Structured elements drive extensive circular RNA translation. Mol Cell 2021; 81(20): 4300-4318.e13. doi: 10.1016/j.molcel.2021.07.042 PMID: 34437836
  24. Vidal AF. Read-through circular RNAs reveal the plasticity of RNA processing mechanisms in human cells. RNA Biol 2020; 17(12): 1823-6. doi: 10.1080/15476286.2020.1805233 PMID: 32783578
  25. Kos A, Dijkema R, Arnberg AC, van der Meide PH, Schellekens H. The hepatitis delta (δ) virus possesses a circular RNA. Nature 1986; 323(6088): 558-60. doi: 10.1038/323558a0 PMID: 2429192
  26. Abe N, Hiroshima M, Maruyama H, et al. Rolling circle amplification in a prokaryotic translation system using small circular RNA. Angew Chem Int Ed 2013; 52(27): 7004-8. doi: 10.1002/anie.201302044 PMID: 23716491
  27. AbouHaidar MG, Venkataraman S, Golshani A, Liu B, Ahmad T. Novel coding, translation, and gene expression of a replicating covalently closed circular RNA of 220 nt. Proc Natl Acad Sci 2014; 111(40): 14542-7. doi: 10.1073/pnas.1402814111 PMID: 25253891
  28. Abe N, Matsumoto K, Nishihara M, et al. Rolling circle translation of circular RNA in living human cells. Sci Rep 2015; 5(1): 16435. doi: 10.1038/srep16435 PMID: 26553571
  29. Pamudurti NR, Bartok O, Jens M, et al. Translation of CircRNAs. Mol Cell 2017; 66(1): 9-21.e7. doi: 10.1016/j.molcel.2017.02.021 PMID: 28344080
  30. Legnini I, Di Timoteo G, Rossi F, et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell 2017; 66(1): 22-37.e9. doi: 10.1016/j.molcel.2017.02.017 PMID: 28344082
  31. Jackson RJ, Hellen CUT, Pestova TV. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 2010; 11(2): 113-27. doi: 10.1038/nrm2838 PMID: 20094052
  32. Chen C, Sarnow P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 1995; 268(5209): 415-7. doi: 10.1126/science.7536344 PMID: 7536344
  33. Yang Y, Fan X, Mao M, et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res 2017; 27(5): 626-41. doi: 10.1038/cr.2017.31 PMID: 28281539
  34. Wesselhoeft RA, Kowalski PS, Anderson DG. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat Commun 2018; 9(1): 2629. doi: 10.1038/s41467-018-05096-6 PMID: 29980667
  35. Wang Y, Wang Z. Efficient backsplicing produces translatable circular mRNAs. RNA 2015; 21(2): 172-9. doi: 10.1261/rna.048272.114 PMID: 25449546
  36. Yang Y, Wang Z. IRES-mediated cap-independent translation, a path leading to hidden proteome. J Mol Cell Biol 2019; 11(10): 911-9. doi: 10.1093/jmcb/mjz091 PMID: 31504667
  37. Nevins TA, Harder ZM, Korneluk RG, Holčík M. Distinct regulation of internal ribosome entry site-mediated translation following cellular stress is mediated by apoptotic fragments of eIF4G translation initiation factor family members eIF4GI and p97/DAP5/NAT1. J Biol Chem 2003; 278(6): 3572-9. doi: 10.1074/jbc.M206781200 PMID: 12458215
  38. Pyronnet S, Dostie J, Sonenberg N. Suppression of cap-dependent translation in mitosis. Genes Dev 2001; 15(16): 2083-93. doi: 10.1101/gad.889201 PMID: 11511540
  39. Walters B, Thompson SR. Cap-independent translational control of carcinogenesis. Front Oncol 2016; 6: 128. doi: 10.3389/fonc.2016.00128 PMID: 27252909
  40. Zhao J, Li Y, Wang C, et al. IRESbase: A comprehensive database of experimentally validated internal ribosome entry sites. Genom Proteom Bioinformat 2020; 18(2): 129-39. doi: 10.1016/j.gpb.2020.03.001 PMID: 32512182
  41. Borman AM, Le Mercier P, Girard M, Kean KM. Comparison of picornaviral IRES-driven internal initiation of translation in cultured cells of different origins. Nucleic Acids Res 1997; 25(5): 925-32. doi: 10.1093/nar/25.5.925 PMID: 9023100
  42. Wang X, Zhao BS, Roundtree IA, et al. N6-methyladenosine modulates messenger RNA translation efficiency. Cell 2015; 161(6): 1388-99. doi: 10.1016/j.cell.2015.05.014 PMID: 26046440
  43. Wang X, Ma R, Zhang X, et al. Crosstalk between N6-methyladenosine modification and circular RNAs: current understanding and future directions. Mol Cancer 2021; 20(1): 121. doi: 10.1186/s12943-021-01415-6 PMID: 34560891
  44. Zhao J, Lee EE, Kim J, et al. Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus. Nat Commun 2019; 10(1): 2300. doi: 10.1038/s41467-019-10246-5 PMID: 31127091
  45. Li XF, Lytton J. A circularized sodium-calcium exchanger exon 2 transcript. J Biol Chem 1999; 274(12): 8153-60. doi: 10.1074/jbc.274.12.8153 PMID: 10075718
  46. Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol 2014; 32(5): 453-61. doi: 10.1038/nbt.2890 PMID: 24811520
  47. Li S, Li X, Xue W, et al. Screening for functional circular RNAs using the CRISPR–Cas13 system. Nat Methods 2021; 18(1): 51-9. doi: 10.1038/s41592-020-01011-4 PMID: 33288960
  48. Li J, Ma M, Yang X, et al. Circular HER2 RNA positive triple negative breast cancer is sensitive to Pertuzumab. Mol Cancer 2020; 19(1): 142. doi: 10.1186/s12943-020-01259-6 PMID: 32917240
  49. Yang R, Lee EE, Kim J, et al. Characterization of ALTO-encoding circular RNAs expressed by Merkel cell polyomavirus and trichodysplasia spinulosa polyomavirus. PLoS Pathog 2021; 17(5): e1009582. doi: 10.1371/journal.ppat.1009582 PMID: 33999949
  50. Zhang M, Zhao K, Xu X, et al. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat Commun 2018; 9(1): 4475. doi: 10.1038/s41467-018-06862-2 PMID: 30367041
  51. Zheng X, Chen L, Zhou Y, et al. A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling. Mol Cancer 2019; 18(1): 47. doi: 10.1186/s12943-019-1010-6 PMID: 30925892
  52. Zhang Y, Jiang J, Zhang J, et al. CircDIDO1 inhibits gastric cancer progression by encoding a novel DIDO1-529aa protein and regulating PRDX2 protein stability. Mol Cancer 2021; 20(1): 101. doi: 10.1186/s12943-021-01390-y PMID: 34384442
  53. Zhang M, Huang N, Yang X, et al. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene 2018; 37(13): 1805-14. doi: 10.1038/s41388-017-0019-9 PMID: 29343848
  54. Jiang T, Xia Y, Lv J, et al. A novel protein encoded by circMAPK1 inhibits progression of gastric cancer by suppressing activation of MAPK signaling. Mol Cancer 2021; 20(1): 66. doi: 10.1186/s12943-021-01358-y PMID: 33836754
  55. Xia X, Li X, Li F, et al. A novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent Kinase-1. Mol Cancer 2019; 18(1): 131. doi: 10.1186/s12943-019-1056-5 PMID: 31470874
  56. Mo D, Li X, Raabe CA, Rozhdestvensky TS, Skryabin BV, Brosius J. Circular RNA encoded amyloid beta peptides—a novel putative player in Alzheimer’s disease. Cells 2020; 9(10): 2196. doi: 10.3390/cells9102196 PMID: 33003364
  57. Pan Z, Cai J, Lin J, et al. A novel protein encoded by circFNDC3B inhibits tumor progression and EMT through regulating Snail in colon cancer. Mol Cancer 2020; 19(1): 71. doi: 10.1186/s12943-020-01179-5 PMID: 32241279
  58. Yang Y, Gao X, Zhang M, et al. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst 2018; 110(3): 304-15. doi: 10.1093/jnci/djx166 PMID: 28903484
  59. Wu X, Xiao S, Zhang M, et al. A novel protein encoded by circular SMO RNA is essential for Hedgehog signaling activation and glioblastoma tumorigenicity. Genome Biol 2021; 22(1): 33. doi: 10.1186/s13059-020-02250-6 PMID: 33446260
  60. Du WW, Xu J, Yang W, et al. A neuroligin isoform translated by circNlgn contributes to cardiac remodeling. Circ Res 2021; 129(5): 568-82. doi: 10.1161/CIRCRESAHA.120.318364 PMID: 34261347
  61. Liang WC, Wong CW, Liang PP, et al. Translation of the circular RNA circβ-catenin promotes liver cancer cell growth through activation of the Wnt pathway. Genome Biol 2019; 20(1): 84. doi: 10.1186/s13059-019-1685-4 PMID: 31027518
  62. Peng Y, Xu Y, Zhang X, et al. A novel protein AXIN1-295aa encoded by circAXIN1 activates the Wnt/β-catenin signaling pathway to promote gastric cancer progression. Mol Cancer 2021; 20(1): 158. doi: 10.1186/s12943-021-01457-w PMID: 34863211
  63. Liang Z, Liu H, Xiong L, et al. A novel NF-κB regulator encoded by circPLCE1 inhibits colorectal carcinoma progression by promoting RPS3 ubiquitin-dependent degradation. Mol Cancer 2021; 20(1): 103. doi: 10.1186/s12943-021-01404-9 PMID: 34412652
  64. Li Y, Chen B, Zhao J, et al. HNRNPL circularizes ARHGAP35 to produce an oncogenic protein. Adv Sci 2021; 8(13): 2001701. doi: 10.1002/advs.202001701 PMID: 34258149
  65. Liu Y, Li Z, Zhang M, et al. Rolling-translated EGFR variants sustain EGFR signaling and promote glioblastoma tumorigenicity. Neuro-oncol 2021; 23(5): 743-56. doi: 10.1093/neuonc/noaa279 PMID: 33325513
  66. Gu C, Wang W, Tang X, et al. CHEK1 and circCHEK1_246aa evoke chromosomal instability and induce bone lesion formation in multiple myeloma. Mol Cancer 2021; 20(1): 84. doi: 10.1186/s12943-021-01380-0 PMID: 34090465
  67. Kong S, Tao M, Shen X, Ju S. Translatable circRNAs and lncRNAs: Driving mechanisms and functions of their translation products. Cancer Lett 2020; 483: 59-65. doi: 10.1016/j.canlet.2020.04.006 PMID: 32360179
  68. Begum S, Yiu A, Stebbing J, Castellano L. Novel tumour suppressive protein encoded by circular RNA, circ-SHPRH, in glioblastomas. Oncogene 2018; 37(30): 4055-7. doi: 10.1038/s41388-018-0230-3 PMID: 29706655
  69. Yin H, Shen X, Zhao J, et al. Circular RNA CircFAM188B encodes a protein that regulates proliferation and differentiation of chicken skeletal muscle satellite cells. Front Cell Dev Biol 2020; 8: 522588. doi: 10.3389/fcell.2020.522588 PMID: 33240871
  70. Chen L, Wang C, Sun H, et al. The bioinformatics toolbox for circRNA discovery and analysis. Brief Bioinform 2021; 22(2): 1706-28. doi: 10.1093/bib/bbaa001 PMID: 32103237
  71. Meng X, Chen Q, Zhang P, Chen M. CircPro: An integrated tool for the identification of circRNAs with protein-coding potential. Bioinformatics 2017; 33(20): 3314-6. doi: 10.1093/bioinformatics/btx446 PMID: 29028266
  72. Sun P, Li G. CircCode: A powerful tool for identifying circRNA coding ability. Front Genet 2019; 10: 981. doi: 10.3389/fgene.2019.00981 PMID: 31649739
  73. Zhong S, Feng J. CircPrimer 2.0: A software for annotating circRNAs and predicting translation potential of circRNAs. BMC Bioinformat 2022; 23(1): 215. doi: 10.1186/s12859-022-04705-y PMID: 35668371
  74. Sun P, Wang H, Li G. Rcirc: An R package for circRNA analyses and visualization. Front Genet 2020; 11: 548. doi: 10.3389/fgene.2020.00548 PMID: 32582287
  75. Pan X, Xiong K, Anthon C, et al. WebCircRNA: Classifying the circular RNA potential of coding and noncoding RNA. Genes 2018; 9(11): 536. doi: 10.3390/genes9110536 PMID: 30404245
  76. Cao Z, Li G. MStoCIRC: A powerful tool for downstream analysis of MS/MS data to predict translatable circRNAs. Front Mol Biosci 2022; 9: 791797. doi: 10.3389/fmolb.2022.791797 PMID: 36072432
  77. Chen X, Han P, Zhou T, Guo X, Song X, Li Y. circRNADb: A comprehensive database for human circular RNAs with protein-coding annotations. Sci Rep 2016; 6(1): 34985. doi: 10.1038/srep34985 PMID: 27725737
  78. Gao Y, Wang J, Zhao F. CIRI: An efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol 2015; 16(1): 4. doi: 10.1186/s13059-014-0571-3 PMID: 25583365
  79. Pan X, Xiong K. PredcircRNA: Computational classification of circular RNA from other long non-coding RNA using hybrid features. Mol Biosyst 2015; 11(8): 2219-26. doi: 10.1039/C5MB00214A PMID: 26028480
  80. Robinson JT, Thorvaldsdóttir H, Winckler W, et al. Integrative genomics viewer. Nat Biotechnol 2011; 29(1): 24-6. doi: 10.1038/nbt.1754 PMID: 21221095
  81. Ito EA, Katahira I, Vicente FFR, Pereira LFP, Lopes FM. BASi-NET—BiologicAl Sequences NETwork: A case study on coding and non-coding RNAs identification. Nucleic Acids Res 2018; 46(16): e96. doi: 10.1093/nar/gky462 PMID: 29873784

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers