Стабильность полимерных композиционных мембран на основе фторсодержащих полисилоксанов в условиях тропического климата

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Одной из ключевых задач мембранной технологии является повышение устойчивости к засорению (фаулингу) и деградации поверхности мембран. В данной работе исследована стабильность свойств селективного слоя на основе фторсодержащих полисилоксанов при экспозиции в течение 6 месяцев на климатических площадках Вьетнама. В работе исследованы три композиционные мембраны на микрофильтрационной подложке МФФК-1 с селективными слоями: 1) полидециметилсилоксана (С10), 2) сополимера С10 и полисилоксана с трифторалкилакрилатной боковой группой (С10–F3), 3) сополимера С10 и полисилоксана с перфтороктильной боковой группой (С10–ПФО). Проанализировано сравнение изменения состава и свойств поверхности селективного слоя, а также газотранспортных свойств до и после экспозиции на испытательных площадках. Показано, что для мембран на основе фторсодержащих полисилоксанов (С10–F3 и С10–ПФО) наблюдается меньшее засорение и деградация полимера селективного слоя. Для образца С10 отмечено разрушение боковых алкильных фрагментов и повышение концентрации атомов кислорода на поверхности селективного слоя, в том числе за счет осаждения микроводорослей. Мембраны С10–F3 продемонстрировали наибольшую стабильность газопроницаемости по СО2 и N2 (изменение не более 10%) и наименьшую окислительную деструкцию.

Полный текст

Доступ закрыт

Об авторах

Т. Н. Рохманка

Институт нефтехимического синтеза имени А.В. Топчиева РАН

Email: evgrushevenko@ips.ac.ru
Россия, Ленинский пр., 29, Москва, 119991

Е. С. Дмитриева

Институт нефтехимического синтеза имени А.В. Топчиева РАН

Email: evgrushevenko@ips.ac.ru
Россия, Ленинский пр., 29, Москва, 119991

Т. С. Анохина

Институт нефтехимического синтеза имени А.В. Топчиева РАН

Email: evgrushevenko@ips.ac.ru
Россия, Ленинский пр., 29, Москва, 119991

Ю. В. Костина

Институт нефтехимического синтеза имени А.В. Топчиева РАН

Email: evgrushevenko@ips.ac.ru
Россия, Ленинский пр., 29, Москва, 119991

Е. А. Грушевенко

Институт нефтехимического синтеза имени А.В. Топчиева РАН

Автор, ответственный за переписку.
Email: evgrushevenko@ips.ac.ru
Россия, Ленинский пр., 29, Москва, 119991

Thanh Long Hoang

Southern Branch of Joint Vietnam–Russia Tropical Science and Technology Research Center

Email: evgrushevenko@ips.ac.ru
Вьетнам, Ho Chi Minh City 740500

Список литературы

  1. Huang W., Zhu Y., Wang L., Lv W., Dong B., Zhou W. Reversible and irreversible membrane fouling in hollow-fiber UF membranes filtering surface water: effects of ozone/powdered activated carbon treatment // RSC advances. 2021. V. 11 (17). P. 10323–10335.
  2. Santos A.V., Lin A.R.A., Amaral M.C.S., Oliveira S.M.A.C. Improving control of membrane fouling on membrane bioreactors: A data-driven approach // Chemical Engineering Journal. 2021. V. 426. 131291.
  3. Zhang R., Liu Y., He M., Su Y., Zhao X., Elimelech M., Jiang Z. Antifouling membranes for sustainable water purification: strategies and mechanisms // Chemical Society Reviews. 2016. V. 45 (21). P. 5888–5924.
  4. Rana D., Matsuura T. Surface modifications for antifouling membranes // Chemical reviews. 2010. V. 110 (4). P. 2448–2471.
  5. Magin C.M., Cooper S.P., Brennan A.B. Non-toxic antifouling strategies // Materials today. 2010. V. 13 (4). P. 36–44.
  6. Wang F., Zhang H., Yu B., Wang S., Shen Y., Cong H. Review of the research on anti-protein fouling coatings material // Progress in Organic Coatings. 2020. V. 147. 105860.
  7. Uwaezuoke O.J., Kumar P., Pillay V., Choonara Y.E. Fouling in ocular devices: implications for drug delivery, bioactive surface immobilization, and biomaterial design // Drug Delivery and Translational Research. 2021. V. 11 (5). P. 1903–1923.
  8. Maan A.M.C. et al. Recent developments and practical feasibility of polymer‐based antifouling coatings // Advanced functional materials. 2020. V. 30 (32). 2000936.
  9. Apel P.Yu., Velizarov S., Volkov A.V., Eliseeva T.V., Nikonenko V.V., Parshina A.V., Pismenskaya N.D., Popov K.I., Yaroslavtsev A.B. Fouling and Membrane Degradation in Electromembrane and Baromembrane Processes // Membranes and Membrane Technologies. 2022. V. 4. P. 69–92.
  10. Drews A. Membrane fouling in membrane bioreactors–Characterisation, contradictions, cause and cures // Journal of membrane science. 2010. V. 363 (1–2). P. 1–28.
  11. Volkov V., Borisov I., Golubev G., Vasilevsky V., Matveev D., Bondarenko G., Volkov A. Sorption-assisted thermopervaporation method for organics recovery from ABE fermentation broth // Journal of Chemical Technology & Biotechnology. 2020. V. 95 (1). P. 40–51.
  12. Da-Silva-Correa L.H., Smith H., Thibodeau M.C., Welsh B., Buckley H.L. The application of non-oxidizing biocides to prevent biofouling in reverse osmosis polyamide membrane systems: a review // AQUA–Water Infrastructure, Ecosystems and Society. 2022. V. 71 (2). P. 261–292.
  13. Daly S., Allen A., Koutsos V., Semião A.J. Influence of organic fouling layer characteristics and osmotic backwashing conditions on cleaning efficiency of RO membranes // Journal of Membrane Science. 2020. V. 616. 118604.
  14. Rajendran D.S., Devi E.G., Subikshaa V.S., Sethi P., Patil A., Chakraborty A., Kumar V.V. Recent advances in various cleaning strategies to control membrane fouling: a comprehensive review // Clean Technologies and Environmental Policy. 2024. P. 1–16.
  15. Zhan M., Gwak G., Kim D.I., Park K., Hong S. Quantitative analysis of the irreversible membrane fouling of forward osmosis during wastewater reclamation: Correlation with the modified fouling index // Journal of Membrane Science. 2020. V. 597. 117757.
  16. Zhao S., Liao Z., Fane A., Li J., Tang C., Zheng C., Kong L. Engineering antifouling reverse osmosis membranes: A review // Desalination. 2021. V. 499. 114857.
  17. Khan R. Enhancing the pervaporation performance of PEBA/PVDF membrane by incorporating MAF-6 for the separation of phenol from its aqueous solution // Separation and Purification Technology. 2021. V. 256. 117804.
  18. Liu W., Lin H., Wang J., Han Q., Liu F. Polytetrafluoroethylene (PTFE) hollow fibers modified by hydrophilic crosslinking network (HCN) for robust resistance to fouling and harsh chemical cleaning // Journal of Membrane Science. 2021. V. 630. 119301.
  19. Salimi P., Aroujalian A., Iranshahi D. Graft copolymerization of zwitterionic monomer on the polyethersulfone membrane surface by corona air plasma for separation of oily wastewater // Separation and Purification Technology. 2021. V. 258. 117939.
  20. Kim D.S., Kang J.S., Lee Y.M. Microfiltration of activated sludge using modified PVC membranes: Effect of pulsing on flux recovery // Separation Science and technology. 2003. V. 38 (3). P. 591–612.
  21. Yang Q., Xu Z.K., Dai Z.W., Wang J.L., Ulbricht M. Surface modification of polypropylene microporous membranes with a novel glycopolymer // Chemistry of Materials. 2005. V. 17 (11). P. 3050–3058.
  22. Iwata H., Ivanchenko M.I., Miyaki Y. Preparation of anti‐oil stained membrane by grafting polyethylene glycol macromer onto polysulfone membrane // Journal of Applied Polymer Science. 1994. V. 54 (1). P. 125–128.
  23. Crivello J.Y., Belfort G., Yamagishi H. Chem. Abstr. 1996, 124, 148194r; U.S. Patent 5,468,390, 1995.
  24. Kilduff J.E., Mattaraj S., Pieracci J.P., Belfort G. Photochemical modification of poly (ether sulfone) and sulfonated poly (sulfone) nanofiltration membranes for control of fouling by natural organic matter // Desalination. 2000. V. 132 (1–3). P. 133–142.
  25. Gancarz I., Pozniak G., Bryjak J., Bryjak M., Kunicki J. Plasma modification of polymer membranes. 2007.
  26. Kim K.S., Lee K.H., Cho K., Park C.E. Surface modification of polysulfone ultrafiltration membrane by oxygen plasma treatment // Journal of Membrane Science. 2002. V. 199 (1–2). P. 135–145.
  27. Lejars M., Margaillan A., Bressy C. Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings // Chemical reviews. 2012. V. 112 (8). P. 4347–4390.
  28. Eduok U., Faye O., Szpunar J. Recent developments and applications of protective silicone coatings: A review of PDMS functional materials // Progress in Organic Coatings. 2017. V. 111. P. 124–163.
  29. Guo W., Ngo H.H., Li J. A mini-review on membrane fouling // Bioresource technology. 2012. V. 122. P. 27–34.
  30. Li B. Synthesis of POSS-containing fluorosilicone block copolym ers via RAFT polymerization for application as non-wetting coating materials // Progress in Organic Coatings. 2015. V. 78. P. 188–199.
  31. Liu Y. Synthesis and characterization of a novel fluorosilicone resin based on trifluoropropylalkoxylsilane // Materials Chemistry and Physics. 2019. V. 224. P. 40–46.
  32. Cornelius D.J., Monroe C.M. The unique properties of silicone and fluorosilicone elastomers // Polymer Engineering & Science. 1985. V. 25 (8). P. 467–473.
  33. Peng H. Synthesis and application of fluorine-containing polymers with low surface energy // Polymer Reviews. 2019. V. 59 (4). P. 739–757.
  34. Zhou C., Shen D., Chai C., Shi B., Zhu B., Wang G. A low dielectric constant material synergized by calix[4]arene and benzocyclobutene units // Journal of Materials Chemistry C. 2023. V. 11 (31). P. 10509–10519.
  35. Rubinsztajn C., Chojnowski J., Mizerska U. Tris(pentafluorophenyl)borane-catalyzed Hydride Transfer Reactions in Polysiloxane Chemistry–Piers–Rubinsztajn Reaction and Related Processes // Molecules. 2023. V. 28 (16). 5941.
  36. Zhang S., Zhang Y., Wang Z., Qiao W. Synthesis and characterizations of polystyrene materials with low dielectric constant and low dielectric loss at high frequency // Journal of Applied Polymer Science. 2023. V. 140 (27). e54012.
  37. Chen S., He T., Li Y., Li X., Zhuang Y., Wang X., Liu Y., Liu X. Significantly reduced intrinsic dielectric constant and loss of nano-silica by direct fluorination // Ceramics International. 2023. V. 49 (14). P. 22816–22825.
  38. Owen M.J. Surface tension of polytrifluoropropylmethylsiloxane // Journal of Applied Polymer Science. 1988. V. 35 (4). P. 895–901.
  39. Graham P. Fluoropolymers with very low surface energy characteristics // Journal of Fluorine Chemistry. 2000. V. 104 (1). P. 29–36.
  40. Grushevenko E.A. Effect of OH-Group Introduction on Gas and Liquid Separation Properties of Polydecylmethylsiloxane // Polymers. 2023. V. 15 (3). P. 723.
  41. Lyadov A. Effects of the Tropical Climate of Vietnam on the Properties of Synthetic Greases with Urea Thickeners // Petroleum Chemistry. 2023. V. 63 (8). P. 1002–1008.
  42. Borisov I.L., Grushevenko E.A., Anokhina T.S., Bakhtin D.S., Levin I.S., Bondarenko G.N., Volkov A.V. Influence of side chains assembly on the structure and transport properties of comb-like polysiloxanes in hydrocarbon separation // Materials Today Chemistry. 2021. V. 22. 100598.
  43. Noi P.T., Kappas M., Degener J. Estimating daily maximum and minimum land air surface temperature using MODIS land surface temperature data and ground truth data in Northern Vietnam // Remote Sensing. 2016. V. 8 (12). P. 1002.
  44. Zhu H., Li X., Pan Y., Liu G., Wu H., Jiang M., Jin W. Fluorinated PDMS Membrane with Anti-biofouling Property for in-situ Biobutanol Recovery from Fermentation-Pervaporation Coupled Process // J. Membr. Sci. 2020. V. 609. 118225.
  45. Zheng X. Fabrication of UV-curable fluorosilicone coatings with impressive hydrophobicity and solvent resistance // Progress in Organic Coatings. 2020. V. 144. 105633.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Лабораторная установка для измерения газопроницаемости смеси.

Скачать (12KB)
3. Рис. 2. СЭМ-изображения поверхности селективного слоя мембран М–С10, М–F3 и М–ПФО до и после длительной экспозиции в условиях климата Вьетнама.

Скачать (946KB)
4. Рис. 3. Оптические изображения мембран М–С10, М–F3 и М–ПФО до и после длительной экспозиции на КИС Кон Зо и Хоа Лак и МНИИС Дам Бай.

Скачать (997KB)
5. Рис. 4. Изменения контактного угла смачивания поверхности селективного слоя композиционных мембран М–С10, М–F3 и М–ПФО до и после экспозиции в течение 6 месяцев на испытательных станциях Тропцентра.

Скачать (193KB)
6. Рис. 5. ИК-НПВО-спектры исходной мембраны М–10 (кривая 1) и мембран М–10 после экспонирования на КИС Хоа Лак (кривая 2), Кон Зо (кривая 3) и МНИИС Дам Бай (кривая 4) в средней области ИК-спектра (а), в области поглощения С=О-связей (б) и колебаний скелета СН-связей при – (СН₂)₄₊ – (в). На врезке – область поглощения валентных колебаний СН- и ассоциированных NH-связей.

Скачать (976KB)
7. Рис. 6. ИК-НПВО-спектры исходной мембраны М–F3 (кривая 1) и мембран М–F3 после экспонирования на КИС Хоа Лак (кривая 2), Кон Зо (кривая 3) и МНИИС Дам Бай (кривая 4) в средней области ИК-спектра (а), в области поглощения С=О-связей (б) и колебаний скелета СН-связей при – (СН₂)₄₊ – (в). На врезке – область поглощения валентных колебаний СН- и ассоциированных NH-связей.

Скачать (954KB)
8. Рис. 7. ИК-НПВО-спектры исходной мембраны М–ПФО (кривая 1) и мембран М–ПФО после экспонирования на КИС Хоа Лак (кривая 2), Кон Зо (кривая 3) и МНИИС Дам Бай (кривая 4) в средней области ИК-спектра (а), в области поглощения С=О-связей (б) и колебаний скелета СН-связей при – (СН₂)₄₊ – (в). На врезке – область поглощения валентных колебаний СН- и ассоциированных NH-связей.

Скачать (962KB)
9. Рис. 8. Относительное содержание СН₂/СН₃-групп в полисилоксановых мембранах в зависимости от климатических условий Вьетнама, % к исходному.

Скачать (170KB)
10. Рис. 9. Данные изменения инсоляции (а) и влажности воздуха (б) в период с июня (6) по ноябрь (11) на климатических площадках Вьетнама.

Скачать (246KB)
11. Рис. 10. Изменение интегральной интенсивности в области поглощения С=О-связей различных функциональных групп в ИК-НПВО-спектрах мембран до и после экспонирования на испытательных станциях Тропцентра.

Скачать (218KB)
12. Рис. 11. Относительное изменение проницаемости CO₂ (а), N₂ (б) и идеальной селективности CO₂/N₂ (в) после экспозиции на испытательных станциях Тропцентра.

Скачать (454KB)

© Российская академия наук, 2025