Graph Condensation for Large Factor Models

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The paper proposes an original method for processing large factor models based on graph condensation using machine learning models and artificial neural networks. The proposed mathematical apparatus can be used in problems of planning and managing complex organizational and technical systems, in optimizing large socio-economic objects on the scale of state sectors, to solve problems of preserving the health of the nation (searching for compatibility when taking medications, optimizing resource provision for healthcare).

Sobre autores

B. Chetverushkin

Keldysh Institute of Applied Mathematics (Russian Academy of Sciences)

Autor responsável pela correspondência
Email: office@keldysh.ru

Academician of the RAS

Rússia, Moscow

V. Sudakov

Keldysh Institute of Applied Mathematics (Russian Academy of Sciences)

Email: sudakov@ws-dss.com
Rússia, Moscow

Yu. Titov

Moscow Aviation Institute (National Research University)

Email: kalengul@mail.ru
Rússia, Moscow

Bibliografia

  1. Четверушкин Б.Н., Судаков В.А. Факторная модель для исследования сложных процессов // Доклады Академии наук. 2019. Т. 489. № 1. С. 17–21.
  2. Forrester J.W. Policies, decisions and information sources for modeling // European Journal of Operational Research. 1992. V. 59. № 1. P. 42–63.
  3. Honti G., Dörgő G., Abonyi J. Network analysis dataset of system dynamics models // Data in Brief. 2019. V. 27. P. 104723.
  4. Jain A., Murty M., Flynn P. Data Clustering: A Review // ACM Computing Surveys. 1999. V. 31. № 3.
  5. Lance G.N., Williams W.T. A general theory of classification sorting strategies in hierarchical system // Comp. J. 1967. № 9. P. 373–380.
  6. Kohonen T. Essentials of the self-organizing map // Neural Networks. 2013. V. 37. P. 52–65.
  7. Alam A., Ahamad M.K. K-Means Hybridization with Enhanced Firefly Algorithm for High-Dimension Automatic Clustering // Journal of Advanced Research in Applied Sciences and Engineering Technology. 2023. V. 33. № 3. P. 137–153.
  8. Reynolds D. Gaussian Mixture Models // Encyclopedia of Biometrics. Boston, MA: Springer, 2009.
  9. Нестеров В.А., Судаков В.А., Сыпало К.И., Титов Ю.П. Матрица нечетких корреспонденций модели авиационных перевозок // Известия Российской академии наук. Теория и системы управления. 2022. Т. 6. № 6. С. 95–102.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024