ТРЕХСЛОЙНАЯ СХЕМА ДЛЯ РЕШЕНИЯ УРАВНЕНИЯ ДИФФУЗИИ ИЗЛУЧЕНИЯ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Разработан метод численного решения нелинейного уравнения, описывающего диффузионный перенос энергии излучения. Метод основан на введении в параболическое уравнение второй производной по времени с малым параметром и явной разностной схеме. Явная аппроксимация исходного уравнения позволяет реализовать на ее основе алгоритм, эффективно адаптируемый к архитектуре различных высокопроизводительных вычислительных систем. Новая схема обеспечивает, сравнительно с исходной схемой, более крупный шаг интегрирования по времени и достаточно высокое разрешение структуры решения, обеспечивая второй порядок точности. Предложен эвристический подход выбора параметров трехслойной разностной схемы. Перспективной областью приложений разработанного метода могут быть задачи физики плазмы и астрофизики.

Об авторах

Б. Н. Четверушкин

Институт прикладной математики им. М.В. Келдыша Российской академии наук

Email: olkhovsk@gmail.com
Россия, Москва

О. Г. Ольховская

Институт прикладной математики им. М.В. Келдыша Российской академии наук

Email: olkhovsk@gmail.com
Россия, Москва

В. А. Гасилов

Институт прикладной математики им. М.В. Келдыша Российской академии наук

Email: olkhovsk@gmail.com
Россия, Москва

Список литературы

  1. Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и высокотемпературных гидродинамических явлений. М.: Физматлит, 2008. 653 с.
  2. Mihalas D., Mihalas B. Foundations of Radiation Hydrodynamics. Oxford University Press Inc., 1984. 718 p.
  3. Четверушкин Б.Н. Математическое моделирование задач динамики излучающего газа. М.: Наука, 1985, 304 с.
  4. Осипов В.П., Четверушкин Б.Н. Вычислительные алгоритмы для систем с экстрамассивным параллелизмом // Журнал вычислительной математики и математической физики. 2020. Т. 60. № 5. С. 802–814. Osipov V.P., Chetverushkin B.N. Numerical Algorithms for Systems with Extramassive Parallelism // Computational Mathematics and Mathematical Physics. 2020. V. 60. № 5. P. 783–794. https://doi.org/10.1134/S096554252005011510.1134/S0965542520050115https://doi.org/10.31857/S0044466920050117
  5. Жуков В.Т., Новикова Н.Д., Феодоритова О.Б. Адаптивный чебышевский итерационный метод // Математическое моделирование. 2018. Т. 30. № 10. С. 67–85. Zhukov V.T., Novikova N.D., Feodori-tova O.B. An adaptive Chebyshev iterative method // Mathematical Models and Computer Simulations. 2019. V. 11. Iss. 3. P. 426–437. https://doi.org/10.1134/S2070048219030165
  6. Gordon L. Olson, Lawrence H. Auer, Michael L. Hall Diffusion, P1, and other approximate forms of radiation transport // Journal of Quantitative Spectroscopy and Radiative Transfer. 15 March 2000. V. 64. Iss. 6. P. 619–634.https://doi.org/10.1016/S0022-4073(99)00150-8
  7. Самарский А.А., Гулин А.В. Устойчивость разностных схем. Изд. 3, стереот. М.: URSS. 2009. 384 с.
  8. Четверушкин Б.Н., Гулин А.В. Явные схемы и моделирование на вычислительных системах сверхвысокой производительности. // Доклады Академии наук. 2012. Т. 446. № 5. С. 501–503. Chetverushkin B.N., Gulin A.V. Explicit Schemes And Numerical Simulation Using Ultrahigh-Performance Computer Sys-tems // Doklady Mathematics. 2012. V. 86. № 2. P. 681–683. https://doi.org/10.1134/S1064562412050213
  9. Мышецкая Е.Е., Тишкин В.Ф. Оценки влияния гиперболизации для уравнения теплопроводности. // Журнал вычислительной математики и математической физики. 2015. Т. 55. № 8. С. 1299. Myshets-kaya E.E., Tishkin V.F. Estimates of the hyperbolization effect on the heat equation // Computational Mathematics and Mathematical Physics. 2015. V. 55. Iss. 8. P. 1270–1275. https://doi.org/10.1134/S096554251508013810.1134/S0965542515080138https://doi.org/10.7868/S004446691508013X
  10. Репин С.И., Четверушкин Б.Н. Оценки разности приближенных решений задач Коши для параболического диффузионного уравнения и гиперболического уравнения с малым параметром // Доклады Академии наук. 2013. Т. 451. № 3. С. 255. Repin S.I., Chetverushkin B.N. Estimates of the difference between approximate solutions of the cauchy problems for the parabolic diffusion equation and a hyperbolic equation with a small parameter // Doklady Mathematics. 2013. V. 88. № 1. P. 417–420. https://doi.org/10.1134/S106456241304015710.1134/S1064562413040157https://doi.org/10.7868/S0869565213210056
  11. Андреев Е.С., Козманов М.Ю., Рачилов Е.Б. Точные решения систем уравнений переноса излучения с разрывом на границе раздела сред // Журнал вычислительной математики и математической физики. 1984. Т. 24. Вып. 1. С. 161–163. Andreev E.S., Kozmanov M.Yu., Rachilov E.B. Exact solutions of sets of radiation transfer equations with a discontinuity at the boundary of two media // Computational Mathematics and Mathematical Physics. 1984. V. 24. № 1. P. 103–105. https://doi.org/10.1016/0041-5553(84)90126-5
  12. Козманов М.Ю., Рачилов Е.Б. О некоторых точных решениях системы уравнений диффузии излучения // Вопросы атомной науки и техники. Серия “Математическое моделирование физических процессов”. 1938. Т. 14. Вып. С. 65–67.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (45KB)
3.

Скачать (43KB)

© Б.Н. Четверушкин, О.Г. Ольховская, В.А. Гасилов, 2023