О таутохронных движениях

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассматривается прямолинейное движение материальной точки под действием двух сил меняющихся по степенным законам с произвольными показателями степеней. Находятся такие показатели степеней, при которых уравнение нелинейно, а период колебаний не зависит от начальных условий (таутохронное движение). Уравнения приводятся к гамильтоновой форме и методом нормальной гамильтоновой формы доказано, что существуют только два варианта таутохронного движения. Вариант 1: показатели степеней равны 1 и –3. Вариант 2: показатели степеней равны 0 и –1/2. При всех других степенных законах движение материальной точки не таутохронно. Гамильтонова нормальная форма таутохронного движения является гамильтонианом линейного осциллятора. Каноническое преобразование, приводящее исходный гамильтониан к нормальной форме, выражается через элементарные функции. Гамильтонианы таутохронных движений могут использоваться для тестирования программных комплексов вычисления нормальной гамильтоновой формы.

Об авторах

А. Г. Петров

Институт проблем механики имени А.Ю. Ишлинского РАН

Автор, ответственный за переписку.
Email: petrovipmech@gmail.com
Россия, Москва

Список литературы

  1. Аппель P. Теоретическая механика. Т. 1. Физ. мат. лит. М., 1960 / Appel P. Traité de mécanique rationnelle – Tome premier statique-dynamique du point 1902.
  2. Ландау Л.Д., Лифшиц Е.М. Механика. Физ. мат. лит. М., 1965
  3. Osypowski E.T., Olsson M.G. Isynchronous motion in classical mechanics // Am.J. Phys. 1987. V. 55. P. 720–725.
  4. Chalykh O.A., Veselov A.P. A Remark on Rational Isochronous Potentials Journal of Nonlinear Mathematical Physics Volume 12, Supplement 1. 2005. P. 179–183.
  5. Буданов В.М. Об одной изохронной нелинейной системе. // Вестн. моск. ун-та. сер.1, математика. механика. 2013. № 6. С. 59–63. / V.M. Budanov, On a nonlinear isochronous system. Moscow Univ. Mech. Bull. 68, (2013).
  6. Биркгоф Д.Д. Динамические системы. Ижевск; Издательский дом “Удмуртский университет”, 1999, 408 с. / Birkhoff D. Dynamical Systems. Publisher, Edwards, 1927
  7. Журавлев В.Ф. Основы теоретической механики. М.: ФИЗМАТЛИТ, 2008. 304 с./ Zhuravlev V.F. Fundamentals of Theoretical Mechanics. М.: FIZMATLIT, 2008. 304 с. (in Russian)
  8. Журавлев В.Ф. Инвариантная нормализация неавтономных гамильтоновых систем. // ПММ, 2002. Т. 66. Вып. 3. С. 356–365. / Zhuravlev V. Ph. Invariant normalization of non-autonomous Hamiltonian systems J. Applied Mathematics and Mechanics. 2004. V. 66. № 3. P. 356–365

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024