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[lo3MoMMKa B aHanu3e MeAULMHCKUX U306parkeHuit =
W NepcneKTUBbl €& UCNO0JIb30BaHUA B KIIMHUYECKOM
npaKTUKe

B.A. Conogkun, H.B. HygHos, M.E. UBaHHukoB, 3.C-A. LLlaxBanuesa,
B.M. CotHuKos, A.10. CMbIcnoB

Poccuiickuit HayuHbIi LIeHTp peHTreHopaauonoruui, Mocksa, Poceuitckas Qepepauus

AHHOTALIMA

O6ocHoBaHMe. B nocneaHue rofbl YBENMYMBAETCA KONMYECTBO CTaTel C UCMOJb30BaHWEM TEPMUHA «[03MOMMKa», O[JHAKO
nMTEepaTypHble 0630pbl HA PYCCKOM A3bIKE N0 JAHHON TEME OTCYTCTBYIOT.

Llenb HacTosiLero 0630pa — onucaTb OCHOBHbIE MPUHLMMBI JO3MOMUKM KaK HanpaBNeHUst paAMOMUKU U NpoaHannu3vpoBaThb
UCCNEA0BaHUA MO OLEHKE BO3MOXHOCTEN NPUMEHEHWS UX B KIIMHUYECKOI MPaKTUKe.

Martepuanbl n MeToabl. CucteMaTyeckuii nouck nuTepatypebl bbin npousseaéH B 6ase AaHHbIX PubMed ¢ nouckoBbIM 3a-
npocoM «dosiomics OR dosiomic», a Takke B 6a3e AaHHbIX elibrary ¢ nouckoBbIM 3anpocoM «ao3noMmKax. Mo coctosHuio
Ha anpenb 2023 roaa 6bim onybnuKoBaHbl 43 3apybexHbIX MCCNef0BaHMS HA TeMY UCMONb30BaHNUA LO3UOMUKY B KIIMHUYE-
CKOM NMpaKTUKe W 0[iHa 0TeyecTBeHHas paboTa c onpeseneHneM TEpMUHA «03MOMUKay.

Pe3synbTartsbl. [poaHanu3upoBaHbl 43 3apybeHbIX UCCNe0BaHUS Ha TEMY MCMOJb30BaHWSA J03MOMUKU B KIIMHUYECKOI NpaK-
TUKe M 1 0TeYECTBEHHAA CTaTbs C OMPeAeSIeHNEM TEPMUHA «[03MOMUKax. [IpoaHann3upoBaHHble paboTbl pasaeneHbl Ha Tpu
TPYNMbl COrNacHo UX TeMaTUKe W CocTaBfieHbl Tabnnubl, onMcbiBaloLLmMe pesynbTaTbl 27 UCCNeA0BaHUA MO NPOrHO3UPOBAHUIO
K/IMHWYECKMX UCXOLL0B.

3akuitoyeHme. B HacTosee BpeMs J03MOMMKA SIBNISIETCA HOBBIM U NMEPCMEKTUBHBIM HanpaBNneHWeM paguoMUKH, NMPUMEHse-
MbIM B TEKCTYPHOM aHanu3e MeMLIMHCKUX M300paeHuiA, CBA3aHHBIX C JIy4eBbIM NIEYEHMEM OHKONOrMYeckux 6onbHbIX. [lo-
3MOMMKa MOXeET crnocobcTBoBaTb pasBuTUI0 Donee NMepcoHanM3MpOBaHHOMO MOAX0AA K MNaHUPOBAHUKO JTyYeBOW Tepanuu,
NPOrHO3MPOBaHMIO JTy4eBbIX NOBPEKAEHUIA HOPMasbHbIX TKAHElH U AMarHOCTUKE peLyavBOB.

KnioueBble cnoBa: [03MOMUKa; paAuoMUKa; JiyyeBaa Tepanud; MallUHHOEe 06yquV|e; VICKYCCTBEHHbIVI WHTEeJIIeKT,
TEKCTyprIﬁ dHans; I'IOCTJ'Iy‘JEBOﬁ MHEBMOHUT.

Kak uutupoBarts:
Conopkmin B.A., HyaHos H.B., MBanHukoB M.E., LLlaxBanmesa 3.C-A., CoTHukos B.M., CmbicrioB Al0. [lo3voMWKa B aHanm3e MeULMHCKMX U300paeHui
V1 NepCreKTUBLI e€ MCNONb30BaHMWS B KMHUYecKown npakTuke // Digital Diagnostics. 2023. T. 4, N° 3. C. 340-355. DOI: https://doi.org/10.17816/DD420053

Pykonucb nonyyena: 15.05.2023 Pykonucb opo6peHa: 15.06.2023 Ony6nukoBaHa: 30.08.2023
5
2KO®BEKTOP Cratba noctynHa no mmuer3vv CC BY-NC-ND 4.0 International

© 3ko-BekTop, 2023

340


https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ru
https://doi.org/10.17816/DD420053
https://doi.org/10.17816/DD420053
https://crossmark.crossref.org/dialog/?doi=10.17816/DD420053&domain=PDF&date_stamp=2023-09-26

341

SYSTEMATICAL REVIEWS Vol 4 (3) 2023 Digital Diagnostics
DOI: https://doi.org/10.17816/DD420053

Dosiomics in the analysis of medical images
and prospects for its use in clinical practice

Vladimir A. Solodkiy, Nikolay V. Nudnov, Mikhail E. Ivannikov,
Elina S-A. Shakhvalieva, Vladimir M. Sotnikov, Aleksei Yu. Smyslov

Russian Scientific Center of Roentgenoradiology, Moscow, Russian Federation

ABSTRACT

BACKGROUND: In recent years, there has been a notable increase in the number of articles using the term “dosiomics”.
However, there are no literature reviews on this topic in the Russian language.

AIM: This study aims to describe the basic principles of dosiomics as a derivative of radiomics and to analyze studies devoted
to assessing the possibilities of its application in clinical practice.

MATERIALS AND METHODS: A systematic literature search was performed in the PubMed database using the search query
“dosiomics OR dosiomic”, and in the eLibrary database using the search query “dosiomics”. By April 2023, 43 foreign articles
and 1 Russian article had been published.

RESULTS: The analysis encompassed 43 foreign studies investigating the use of dosiomics in clinical practice, alongside one
Russian article that provided a definition of the term “dosiomics”. The analyzed papers were divided into three groups according
to their subject matter, and two tables describing the results of 27 studies on the prediction of clinical outcomes were created.
CONCLUSION: Currently, dosiomics is a new and promising derivative of radiomics used in the textural analysis of medical
images associated with radiation treatment of cancer patients. Dosiomics can contribute to the development of a more
personalized approach to the planning of radiotherapy, the prediction of radiation damage of normal tissues, and the diagnosis
of recurrence.

Keywords: dosiomics; radiomics; radiation therapy; machine learning; artificial intelligence; texture analysis; radiation
pneumonitis.
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INTRODUCTION

Radiation therapy is one of the most widely used
treatments in cancer patients. Radiation therapy can
be performed alone or in conjunction with surgery or
chemotherapy, although there is a substantial risk of
developing post-radiation problems [1]. As a result, toxicity
assessment is an important aspect of radiation therapy
planning and delivery [2].

Personalized dose selection is one approach to
addressing this problem (e.g., increasing the dose for low-
risk patients or optimizing treatment for patients with a high
risk of complications [2]). At the planning stage of radiation
therapy, prediction models are built to assess the risk of
radiation damage to healthy organs and tissues based on
various parameters.

Radiomics has recently gained popularity as a means
of analyzing radiological data. This machine learning—
based method for extracting quantitative characteristics
from medical images (typically describing shape,
intensity, and texture) may be used to develop prediction
models [3].

Radiomics is commonly used to diagnose chest
disorders such as nodules and cancer, obstructive and
restrictive diseases, and infiltrative lung diseases [4-7].
Furthermore, radiomics has been successfully used
to predict treatment side effects, such as pneumonitis
associated with radiation therapy and immunotherapy,
and distinguish between iatrogenic lung injury and
tumor recurrence [7]. Radiomics has gained popularity
in predicting the COVID-19 course [8-10]. Radiomics can
help in diagnosis, prognosis, treatment, follow-up, and
monitoring treatment response [11].

In addition to radiomics, the concept of “dosiomics” is
becoming more popular. This radiomics area is used for the
3D distribution of radiation therapy doses to extract useful
data for forecasting radiation therapy [12-14]. An integrated
approach is becoming more popular for predicting post-
radiation damage based on dosiomics, radiomics, and clinical
data [13].

Imaging Segmentation
e |
Obtaining Segmentation
images of images

Fig. 1. Stages of extraction and analysis of radiomics features.
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This study aims to describe the fundamental principles
of dosiomics as a subfield of radiomics and examine a study
that evaluates the potential for its use in clinical practice.

Search and inclusion criteria
for literature sources

A systematic literature search was performed using
a PubMed database with the search term “dosiomics OR
dosiomic” and an eLibrary database with the search term
“dosiomics.” By April 2023, 43 global papers have been
published.

Therefore, 43 global studies evaluating the use of
dosiomics in clinical practice and one Russian study defining
the term “dosiomics” were analyzed [15]. The papers were
divided into three groups based on their topics, and a
summary table was compiled describing 27 studies according
to their value for clinical outcome prediction.

BASICS OF RADIOMICS

AND DOSIOMICS: METHODS

FOR EXTRACTING TEXTURE
CHARACTERISTICS FROM COMPUTED
TOMOGRAPHIC IMAGES

Radiomics is a technology to establish a relationship
between multiple quantitative characteristics extracted from
medical images of organs and tissues and the clinical picture
of the disease using multivariate statistical analysis [16].

Radiomics features define tissue pictures’ textural
characteristics to identify image biomarkers and develop
predictive rules [17].

Figure 1 presents steps to extract and analyze radiomics
features using lung computed tomography (CT) as an
example. The area of interest is divided after a radiological
assessment to isolate the lesion from the surrounding healthy
tissue. For large and spatially heterogeneous lesions, 3D
segmentation can provide more information. Segmentation
can be done manually, semi-automatically, or automatically.
The inaccessible radiomics features for visual assessment are

Radiomics Building a model
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|
First order g 0
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then calculated using mathematical techniques. First-order
statistics, gray-level adjacency, and homogeneity matrices
are common parameters. The final stage involves reducing
the sample size, statistical analysis, and selecting the most
significant features while removing associated values to
construct a decision rule using machine learning methods [18].

Key radiomics features

Radiomics features are extracted from medical images
using the open-source PyRadiomics package. Radiomics
uses two main groups of parameters: first-order statistics
and texture matrices of adjacency and uniformity. These
include the following matrices [16-18]:

» Gray-Level Co-occurrence Matrix (GLCM)

+ Gray-Level Run-Length Matrix (GLRLM)

+ Gray-Level Size Zone Matrix (GLSZM)

+ Neighboring Gray Tone Difference Matrix (NGTDM)

» Gray-Level Dependence Matrix (GLDM)

First-order statistics use a pixel intensity histogram in a
region of interest to characterize gray frequency distribution
without considering spatial relationships between pixels [19].
These features are known as first-order statistics because
they are based on examining a single pixel or voxel without
considering the surrounding areas’ intensity.

Higher-order statistical measures consider the relative
spatial location of voxels, allowing them to define texture
characteristics. The most common are halftone adjacency
and uniformity matrices (GLCM, GLRLM, and GLSZM). NGTDM
and GLDM are less common.

GLCM is a second-order histogram of gray levels
[19]. It captures spatial relationships between pixels or
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voxels with predefined gray-level intensities in different
directions (horizontal, vertical, or diagonal for 2D analysis
and 13 directions for 3D analysis) and a predefined distance
between pixels or voxels (Figure 2; hereafter, the principle
of calculating matrix parameters in 2D space will be
presented) [20].

GLRLM is a matrix described by Galloway. It represents
the spatial distribution of vectors of successive pixels with
the same gray-level in one or more directions in two or three
dimensions (Figure 3).

GLSZM quantitatively describes image areas with the
same gray-level, consisting of adjacent voxels. According to
Thibault et al. [23], GLSZM is similar to GLRLM, but the first
matrix is based on the calculated number of groups (so-called
zones) of interconnected neighboring pixels or voxels with
the same gray-level (Figure 4). A more uniform texture will
result in a wider, flatter matrix. GLSZM cannot be calculated
for different directions but can be calculated for varied
distances between pixels or voxels in the neighborhood.
GLSZM parameters can be determined in two (eight nearby
pixels) or three (26 neighboring voxels) dimensions [19].

For NGTDM, the texture characteristics of a given
matrix represent the intensity difference between adjacent
voxels [24].

GLDM quantifies gray-level dependencies in an image
(19, 25].

Dosiomics

Dosiomics is a relatively new area of radiomics. It is a
textural study of radiation dose distribution used in radiation
therapy planning.

Nieghbour voxel value

al1|4a|2|2 s 1 2 3 4
3|3[3]|2]2 S1f2]|0f1]2
—»42411—»520201
4(1|3|3|4 £3|0/1[3[1
1(1|4a|af2 24|3|3[0]1

&

GLCM (horizontal)

Fig. 2. Example of calculating GLCM parameters: three pairs of neighboring pixels with intensity levels 4 and 1 (highlighted in green).
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Fig. 4. Example of calculating GLSZM parameters: there is one zone consisting of four pixels with a gray-level of 2 (highlighted in green).

The first scientific articles originate from 2018 when
Gabry et al. [26] used this approach to predict xerostomia
after radiation therapy in 15 head and neck cancer patients.

The process of obtaining dosiomics features includes two
steps.

1. Radiation therapy 3D planning uses a sequence of parallel
X-ray CT images, with the anatomical structures and
target volume defined manually or using an automatic
mathematical contouring program in the planning system
(27, 28].

2. After acquiring 3D dose distribution models, they are
processed using radiomics masks with open code
implemented in Python, and quantitative textural
parameters of an area of interest are generated. These
parameters, which include the textural qualities outlined
above (first-order statistics with adjacency and uniformity
matrices), are retrieved from dose distribution models,
and are referred to as dosiomics features.
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Fig. 5. Texture analysis of a 3D model of radiation dose distribution to the rectal area: (@) 3D dose distribution in the rectum, (b) gray-level
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Rossi et al. [29] reported a textural analysis of a 3D
radiation dose distribution model in the rectal area. After
mapping the radiation dose distribution, the area of interest
is treated with radiomics masks, and textural characteristics
are extracted. Figure 5 shows dosiomics features extracted
from the area of interest.

Because the studied data array often has a
disproportionately large number of input variables, there is
the problem of reducing the dimensions of the attribute space.
One of the most prominent guidelines for the relationship
between the number of features and observations is the 20
EPV rule. EPV (events per independent variable) is defined
as the number of occurrences per independent variable,
calculated by adding the number of patients in a smaller
subgroup to the number of input characteristics used when
creating a prediction model [30].

The next step is to reduce the attribute space’s
dimensions using one of several methods, such as the
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frequency histogram, (c) GLCM, (d) GLRLM, (e) GLSZM, and (f) NGTDM.
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principal component method, linear discriminant analysis,
and random forest method (importance function) [31,
32]. Then, using machine learning approaches, eliminate
linked values to construct a decision rule [18]. At the final
stage, multivariate statistical analysis is undertaken using
a forecasting model chosen based on the purpose of the
examination. The accuracy of hinary classification models
is often assessed using a receiver operating characteristic
(ROC) and denoted as the area under the curve (AUC) in
studies. The curve uses sensitivity (the fraction of genuine
positives) and specificity (the proportion of true negatives).
The concordance index (C-index) is the most commonly used
metric for evaluating the performance of survival models.
Based on the Kendall correlation coefficient, this measures
the rank correlation between predicted risk scores and
observed scores at individual points in time.

USE OF DOSIOMICS IN CLINICAL
PRACTICE

According to reviewed foreign literature, three
main areas of research can be distinguished: the use of
dosiomics features to predict radiation damage to healthy
tissues, prediction of tumor relapses, and evaluation of
the stability as well as reproducibility of dosiomic signs.
Some literature reviews were also prepared; for example,
groups of authors led by Sun [33] and Zhang [34] described
dosiomics as a new direction in texture analysis of medical
images.

Use of dosiomics features in predicting radiation
damage to healthy tissues

All of these studies try to develop models (rules) for
predicting cases of radiation damage in cancer patients.
Most papers compared the efficacy of prognostic rules
based on various types of data such as clinical factors,
dose-volume histograms (DVH), indicators of radiobiological
models of tumor control probability (TCP) and normal tissue
complication probability (NTCP), dosiomics, radiomics, and
dosimetry features.

The parameters researchers use, their combinations, and
the statistical methods vary significantly from study to study.
Most studies examined the ability to predict post-radiation
pneumonitis in cancer patients after radiation therapy.
According to the literature, the incidence of post-radiation
pneumonitis ranges widely (from 5% to 58%) and it is one of
the most prevalent consequences after lung cancer radiation
therapy [1]. The most extensive research in this area was
conducted by Zhang et al. in 2023 [35], using data from
314 retrospectively collected and 35 prospectively enrolled
patients with lung cancer. The models used radiomics,
dosiomics, DVHs, and clinical factors. In the external testing
sample, a decision rule constructed by integrating radiomics,
dosiomics, and clinical data showed the best predictive ability
with an AUC of 0.855 (95% confidence interval, 0.719-0.990)
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[35]. According to the findings of this study, models based on
integrating various parameters are more accurate.

Other researchers confirmed that a model based on a
combination of dosiomics and radiomics features has the
best predictive ability. Similar results were obtained by
Li et al. [36, 37], who extracted metrics from specifically
segmented functional areas of the lung, and Huang et
al. [2]. Hence, a model by Zhou et al. [38], based on the
distribution of equivalent radiation dose, demonstrated
high predictive ability with the AUC of 0.799 in the test
set. It should be noted that Kraus et al. [39] used a
predictive model with the same combination of features,
but it was based on the distribution of absorbed radiation
dose, which proved to be more effective. Such differences
may be related to the low reproducibility and stability of
dosiomics features.

Some scientific papers have compared models based on
dosimetry and dosiomics features. In studies by groups led
by Puttanawarut [40] and Liang [13, 41], models based on
dosiomics indicators were more effective, whereas in the
study by Adachi et al. [42], the combination of dosiomics
and dosimetry indicators was also clinically significant.
Models integrating radiomics and dosiomics indicators have
demonstrated great accuracy in predicting not only post-
radiation pneumonitis but also additional post-radiation
damage, such as severe weight loss (by more than 5% in
2 months), which is confirmed by Lee [43] and Han [44].
Han et al. developed a medical decision support system
to help healthcare providers forecast severe weight loss
more accurately. These results show that it is possible to
implement decisive rules based on dosiomics in clinical
practice. Zheng et al. [45] created a model for predicting
acute radiation esophagitis in patients with lung cancer and
obtained the highest area values under the ROC curve (0.801)
using a combination of radiomics, dosiomics, and clinical
features.

Ren et al. [46] showed higher efficiency of dosiomics-
based decision rules than dosimetric models. Authors
predicted post-radiation hypothyroidism in patients with
nasopharyngeal carcinoma. Yang et al. [47] indicated radiation
damage to the temporal lobe in individuals with a similar
diagnosis. A model based on the patient’s age, dosimetric,
and dosiomic features showed the best result with a C-index
of 0.794 in the external test set.

Rossi et al. [29] used clinical data, dose-volume histogram
indicators, and dosiomics features to improve the prediction
of late radiation therapy complications of bladder and rectum
radiation therapy, such as nocturia, rectal bleeding, and fecal
incontinence. Monti [48] study should also be mentioned. It
evaluated the relationship between dosiomics and genomics
features in developing post-radiation lymphopenia in 186
patients with non-small cell lung cancer after chemoradiation
therapy. The authors suggest that the discovered relationships
will help develop more effective personalized radiation
therapy strategies.
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The reviewed studies showed that using dosiomics
features in models increases the area under the ROC curve,
indicating the predictive value of these parameters.

Described studies evaluating the ability to predict radiation
damage to normal tissues are presented in Table 1.

Prediction of tumor recurrence/progression

These studies use the same general concepts to forecast
radiation damage. Kamezawa et al. [49] and Wu et al. [14]
evaluated the ability to predict local recurrence of head
and neck cancer. Dosiomics-based models were the most
effective. A similar study was conducted by Wang et al. [50],
who built overall survival prediction models using texture
indices extracted from CT, positron emission tomography CT
(PET-CT), and dose distribution maps for radiation therapy
planning. In terms of forecasting performance, the combined
model was the most effective.

Murakami [12] and Pirrone [51] used different approaches
for predicting prostate cancer recurrence. The first study
predicted biochemical relapse. It was found that a model
integrating clinical and dosiomic variables was the most
effective for this purpose. The local recurrence prediction
model in the second trial was based on radiomics and
dosiomics indices generated from physiologically effective
dose distribution maps, CT, and PET-CT images.
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Buizza et al. [52] and Morelli et al. [53] demonstrated
the effectiveness of dosiomic models in predicting the local
recurrence of skull base chordomas and sacral localization.
Similar decision rules also showed a high C-index in a study
by Cai et al. [54] evaluating the ability to predict the recurrence
and metastasis of nasopharyngeal carcinoma. Combined
model by Wang et al. [55] demonstrated that machine
learning with dosiomics features has the potential to predict
complete remission of rectal cancer after radiotherapy.

Before treatment, Lam et al. [56] evaluated CT and
MRI scans of 135 patients with nasopharyngeal carcinoma
to predict the acceptability of adaptive radiation therapy.
This was the first study to use the term “contouromics,”
which refers to a method for defining intricate geometric
relationships between four pairs of volumes of interest (VOI).
The most accurate model was based on radiomics, with an
AUC of 0.927 (95% confidence interval, 0.905-0.948).

As in the case of predicting radiation damage, these
studies show the high accuracy of dosiomics-based models.
Studies indicating relapse or progression of neoplasms are
presented in Table 2.

Reproducibility of dosiomics features

The statistical models and methods used in this group of
studies are quite different, yet they all share the problem of

Table 1. Studies to evaluate predicting radiation damage to normal tissues

Study Predicted radiation damage AUO(; r:g;l;ln?iis;ed Model with the highest AUC
Zhang et al. [35] Post-radiation pneumonitis 0.774 R+D+C-AUC=0.855
Li et al. [36] Post-radiation pneumonitis — R+ Ds - AUC = 0.885
Li et al. [37] Post-radiation pneumonitis 0.74 R+D-AUC=0.88
Huang et al. [2] Post-radiation pneumonitis 0.8462 R+D-AUC=10.90
Zhou et al. [38] Post-radiation pneumonitis — R+ DVH - AUC = 0.805
Kraus et al. [39] Post-radiation pneumonitis 0.70 R+D-AUC=0.79
Puttanawarut et al. [40] Post-radiation pneumonitis 0.71 D-AUC=0.71
Liang et al. [13] Post-radiation pneumonitis 0.782 D-AUC=0.782
Liang et al. [41] Post-radiation pneumonitis 0.782 AUC = 0.842
Adachi et al. [42] Post-radiation pneumonitis 0.837 Ds +D - AUC = 0.846
Lee et al. [43] Weight loss — R+D-AUC=0.710
Han et al. [44] Weight loss — T—IEPE - aaiildgg’: ?)?5’2
Zheng et al. [45] Acute radiation esophagitis 0.604 C+R+D-AUC=0.801
Ren et al. [46] Post-radiation hypothyroidism 0.7 D-AUC=07

Yang et al. [47]
Rectal bleeding
) Fecal incontinence
Rossi et al. [29] )
Nocturia

Urinary incontinence

Radiation damage to the temporal lobe —

Age + DVH + D - C-index = 0.794
C+DVH+D-AUC=0.73
C+DVH+D-AUC=0.73

C+D-AUC=0.66
C+DVH+D-AUC=0.73

Note. AUC, the area under the characteristic curve; C, clinical data of patients; D, dosiomics features; Ds, dosimetry features; DVH, dose-volume

histograms; R, radiomics features.
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Table 2. Studies to evaluate predicting tumor progression
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Study Predicted variable

Accuracy of the

dosiomics-based model Model with the highest accuracy

Local recurrence of head and neck

Kamezawa et al. [49] cancer

Local recurrence of head and neck

Wu et al. [14] cancer

Local recurrence of head and neck

Wang et al. [50] cancer

Murakami et al. [12] Recurrence of prostate cancer

Pirrone et al. [51] Recurrence of prostate cancer

Buizza et al. [52] Recurrence of skull base chordomas

Morelli et al. [53] Recurrence of sacral chordomas

Relapse and metastasis of

Cai et al. [34] nasopharyngeal carcinoma

Wang et al. [55] Remission of rectal cancer

Grade ray therapy at carcinoma

Lam et al. [56] nasopharynx

AUC = 0.81 D-AUC=0.81
C-index = 0.66 D - C-index = 0.66
— R-PET + R-CT + Ds - C-index = 0.873
— D + C - C-index = 0.67
AUC =0.68 D-AUC=0.68
C-index = 0.79 R - C-index = 0.80
C-index = 0.86 D - C-index = 0.86
C-index = 0.822 for
relapse, D - C-index = 0.822 for relapse,
C-index = 0.786 for D - C-index = 0.786 for metastasis
metastasis
— AUC =0.828
AUC =0.811 R-AUC=0.927

Note. AUC, area under the characteristic curve; C, clinical data of patients; CT, computed tomography; D, dosiomics features; Ds, dosimetry features;

PET, positron emission tomography; R, radiomics features.

low dosiomics stability and reproducibility. Two studies by
Puttanawarut et al. [57, 58] were devoted to this issue. The
first study assessed the general applicability of radiomics
and dosiomics features derived from images of cancers
of various locations. A database containing data from 101
patients with esophageal cancer patients and 93 lung cancer
patients was used. Four models were developed to predict
post-radiation pneumonitis in patients diagnosed with
esophageal cancer and then applied to a group of patients
with lung cancer. In samples of patients with esophageal
cancer and lung cancer, the model based on a combination
of dosiomics and radiomics features produced the best
results, with AUC = 0.75 and AUC = 0.68, respectively. Such
results may point to the restricted applicability of decision
criteria to malignancies of various locations. The second
study by Puttanawarut et al. [58] assessed the stability
of dosiomics features when simulating errors in dose
distribution planning. The average intraclass correlation
coefficient (ICC) for the 93 dosiomics features tested was
0.9, indicating stability, with five features having values
below 0.75, indicating low reproducibility. Adachi et al. [59]
also assessed the reproducibility of dosiomics features
when using various dose calculation algorithms. When using
the Acuros XB algorithm, 34.8% of the 6,808 parameters
tested exhibited good reproducibility, highlighting the
limitations of dosiomics when using different types of dose
calculations. Simultaneously, Sun et al. [60] reported that
most dosiomic features were stable to changes in dose

BOI: https://doi.org/10.17816/DD420053

calculations, but DVH parameters were less variable than
dosiomic features. Placidi et al. [61] identified four groups
of stable dosiomics features for further research. The
authors later demonstrated the significance of voxel size in
dosiomics data extraction [62].

Indeed, normalization, stability, and reproducibility of
features remain important aspects for such studies and
require further research.

DISCUSSION

The most common predictor characteristic in the
studies cited (11 studies) was post-radiation pneumonitis.
In nine of them, dosiomics features without combination
with other signs were used to construct the decision rule.
The AUC, used as a fit measure for such models, ranged
from 0.67 to 0.84. Decision rules based on dosiomics also
had high accuracy when predicting relapses of tumors of
various locations (C-index >0.66). The accuracy increased
when combined models were constructed using dosiomics,
radiomics, dosimetry features, and clinical data, indicating
a good predictive ability and prospects for use in clinical
practice for personalized treatment planning.

At the time of writing this article, a few studies were
conducted with primarily small sample sizes, indicating
the necessity for additional research into dosiomics and
its possible applications. Dosiomics could be incorporated
into the radiation therapy planning process. In most studies,
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dosiomics was the most effective when combined with other
qualitative and quantitative signs; thus, dosiomics should
now be considered precisely as a direction of radiomics that
allows for improving the efficiency of predictive models. The
properties of dosiomics and radiomics depend on the software
used and can vary significantly from study to study. Low
stability and reproducibility of features are severe barriers
to introducing dosiomics into clinical practice; therefore, they
require further study.

CONCLUSION

Dosiomics is a new and promising area of radiomics
used in texture analysis of medical images associated
with radiation therapy of cancer patients. Dosiomics can
contribute to developing a more personalized approach to
planning radiation therapy, predicting radiation damage to
normal tissues, and diagnosing relapses.
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