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Ponb cucteMbl KOHTPONA KayecTBa Nly4eBoi iy
AVNArHOCTUKM OHKOJIOrMYecKuX 3aboneBaHuu
B paAUOMUKe

A.H. Xopyas, E.C. Axmag, [1.C. CemeHoB

Hay4Ho-npaKTU4eCcKuUi KNMHUYECKUIA LIEHTP AMarHOCTUKM U TeneMeaULMHCKUX TeXHONOrWiA [lenapTamMeHTa 3npaBooxpaHeHusa ropoaa Mockssl,
MockBa, Poccurickan QOepepauua

AHHOTALNA

CoBpeMeHHble MeTofbl MEeAMLMHCKOW BM3yanusauuu AaloT BO3MOMHOCTb KaYeCTBEHHO W KONMYECTBEHHO OLIEHWUTb
KaK TKaHW 0NyXonu, Tak U MPOCTPaHCTBO BOKpYT Heé. lporpecc B MHbopMaTuKe, 0C06EHHO € y4acTMeM METOAO0B MALLMHHOIO
0by4eHMA B aHanu3e MeJULIMHCKUX M3o06paxkeHuni, No3BonAeT npeobpasoBbiBaTh iobble paguonoruieckue UcCnefoBaHuA
B NopjJatoLimecs aHanusy Habopbl daHHbIX. Cpeay 3TUX HabopoB AaHHbIX 3aTEM MOMHO MCKaTb CTAaTUCTUYECKM 3HAYMMble
KOPPEeNALMU C KNUHUYECKUMM COBLITUAMM, YTOObI BNIOCNEACTBMM OLLEHUBATL MX MPOrHOCTUYECKYI0 3HAYMMOCTb M CNocob-
HOCTb NpefCKasblBaTb TOT UM UHOM KNMHUYECKUI Ucxod. ITa KoHUenuwmA Brepsble bbina onucana B 2012 r. u nonyumna
Ha3BaHue «pagnoMuKax». Ocobylo 3HaUMMOCTb OHA NPeLCTaBAAET ANA OHKOMOMMK, NOCKONbKY M3BECTHO, YTO KarablA TUN
ONYX0/M MOMET NOAPa3AeNATLCA Ha MHOMKECTBO Pa3fIMUHbIX MONEKYNAPHO-TreHETUYECKMX MOATUNOB, M NPOCTO BU3YaNlbHOM
XapaKTePUCTUKU ceiyac yxKe He[ocTaTouHo. A pagMoMMKa npu abconioTHOM HeMHBA3WMBHOCTU criocobHa obecneynTs Bpa-
Ya-paguonora MHpopMaLMen, KOTOpYID MOPOI MOMKET LaTb TOSbKO MMCTONOMMYECKOe MCCef0BaHMe BMONCMIAHOrO MaTe-
puana. 0gHaKo, Kak U B N0 METOAMKE, OCHOBAHHOM Ha MCMOMb30BaHUM BONbLUMX JaHHbIX, 3A€Ch 0CTPO BCTAET BOMPOC
0 KayecTBe UCXOAHOW MHPOPMALMM AaHHBIX, MOTOMY KaK 3T0 MpAMbIM 06pa3oM MOKeT NOBAMATL Ha MCXOA aHanusa v aatb
HEBEPHYI0 AMArHOCTUYECKYI0 MH(pOPMaLIMIO.

B nutepatypHoM 0630pe Mbl aHanM3upyeM BO3MOMHbIE NMOAXOAbI K 0becneyeHuIo KauyecTBa MCCiefoBaHWUM Ha BCeX
3Tanax — 0T TEXHWYECKOr0 KOHTPONA 33 COCTOAHUEM MarHOCTUYECKOro 060pynoBaHNs [0 U3BJIEYEHNA MapKepoB BU3Y-
anu3aumm B OHKOMIOMUM W BbIMUCTIEHWA UX KOPPENALMUU C KITUHUYECKUMU LaHHBIMM.

KnioueBble cyioBa: paguoMUKa; JydeBas AMArHOCTMKA; KOHTPOSb KauecTBa; CTaH1apTU3aLMA; ONYX0/u; OHKONIOrMYeCKue
3abonesaHus.

Kak uutuposatb
Xopyan AH., Axmap E.C., CemenoB [1.C. Posib cMCTEMbI KOHTPOMA Ka4ecTBa Ny4eBoi AMarHOCTUKM OHKOMOMMYeCKmX 3abonesanmin B paguomuke // Digital
Diagnostics. 2021. T. 2, N2 2. C. 170-184. DOI: https://doi.org/10.17816/DD60393

Pykonuck nonyyena: 09.02.2021 Pykonucb opobpena: 31.05.2021 Ony6nukoBaHa: 04.07.2021

A
3KO®BEKTOP JIvuensna CC BY-NC-ND 4.0
© Konnex1vie asTopos, 2021


https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.17816/DD70922
https://doi.org/10.17816/DD60393
https://crossmark.crossref.org/dialog/?doi=10.17816/DD60393&domain=PDF&date_stamp=2021-08-10

171

REVIEWS Vol 2 (2) 2021 Digital Diagnostics
DOI: https://doi.org/10.17816/DD60393

The role of the quality control system for diagnostics
of oncological diseases in radiomics

Anna N. Khoruzhaya, Ekaterina S. Akhmad, Dmitry S. Semenov

Moscow Center for Diagnostics and Telemedicine, Moscow, Russian Federation

ABSTRACT

Modern medical imaging methods allow for both qualitative and quantitative evaluations of tumors and issues
surrounding them. Advances in computer science and big data processing are transforming any radiological study
into analytic datasets, especially with the use of machine learning in medical image analysis. Among these datas-
ets, statistically significant correlations with clinical events can then be searched for to subsequently assess their
predictive value and ability to predict a particular clinical outcome. This concept, known as “radiomics,” was first
described in 2012. It is particularly important in oncology because each type of tumor can be subdivided into many
different molecular genetic subtypes, and simple visual characteristics are no longer sufficient. Moreover, as an ab-
solutely noninvasive method, radiomics can provide a radiologist with additional information that would otherwise
be unavailable without a histological examination of biopsy material. However, as with any methodology based on
the use of big data, the question of the quality of the initial data becomes critical, because this can directly affect the
outcome of the analysis and provide incorrect diagnostic information.

In this literature review, we examine potential approaches to ensuring the quality of research at all stages, from
technical control of the state of diagnostic equipment to the extraction of imaging markers in oncology and the
calculation of their correlation with clinical data.
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INTRODUCTION

Advances in the field of radiation imaging significantly
expanded their role in the entire range of methods for tu-
mor processes management, from diagnosing primary foci
and detecting metastases to monitoring treatment response
and predicting individual patient outcomes. However, a sim-
ple visual analysis of tumor using radiation diagnostics is
no longer sufficient, since each type of tumor is known to
subdivide into many different molecular genetic subtypes.
Accordingly, each tumor requires its own therapeutic and
diagnostic approach. Here from the side of diagnostics, ra-
diomics can be of great help.

Radiomics represents a method not just for visual analy-
sis of medical images, but for large number extraction of
guantitative signs, which allow deeper analysis and compre-
hensive assessment, such as tumor phenotypes and other
pathological properties of affected tissues, as well as tumor
biological characteristic assessment and treatment response
prediction [1, 2]. For example, solid cancer is heterogeneous
in time and space, which limits the use of molecular analysis
based on invasive hiopsy but offers great potential for medi-
cal imaging and enables non-invasive detection of intratu-
moral heterogeneity [3-5].

Quantitative analysis transition requires the development
of automated and reproducible analysis methodologies to
extract additional information from images [6]. Hence, a
question in initial data quality arises, since this can affect
the analysis outcome and provide incorrect diagnostic infor-
mation, which will affect the clinical significance of detected
indicators and patient health [7, 8].

Therefore, this literature review aimed to analyze possi-
ble approaches to ensure the quality of radiation diagnostics
studies at all stages, from technical control over the state
of diagnostic equipment to extracting imaging markers in
oncology and calculating their correlation with clinical data.
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Literature search was performed in the PubMed,
GoogleScholar, and eLibrary databases in English and
Russian languages. Requests such as “radiomics,” “can-
cer and tumors,” “standardization,” and “quality as-
surance or quality control” were used for PubMed and

GoogleScholar.

METHODOLOGY OF RADIOMICS
Image acquisition

The step 1 in radiomics consists obtaining images using
radiology methods, namely magnetic resonance imaging
(MRI), computed tomography (CT), and positron emission
tomography combined with computed tomography (PET/CT)
(Fig. 1). Radiology methods provide various and often com-
plementary information about physical and kinetic prop-
erties of tissues, metabolism, etc. For example, analysis
based on the size or volume of the pathological structure
can be obtained using anatomical MRI or CT. Perfusion can
be determined by a series of dynamic MRI or contrast-
enhanced CT scans. Diffusion-weighted MRI can be used
to assess tissue microcirculation and assess cellularity.
Metabolic changes such as glucose metabolic rate can be
measured using PET/CT and fluorodeoxyglucose. In addi-
tion, other additional biomarkers may be proposed in the
course of clinical trials [9, 10].

Historically, imaging devices were developed for subjec-
tive interpretation of images, for clinicians to determine the
presence of lesion and its location. Subsequent technical in-
novations are focused on image quality improvement, scan
times reduction, or processing machines integration. These
devices were not primarily intended to provide quantitative
measurement in a reproducible manner. Standardization
protocols for image acquisition are unavailable. In addition,
significant differences may be present in reconstruction

SR
o Data integration, Data output
Radiomic grouping, (robust imaging
signs and correlation biomarkers,
. prognostic factors)
calculation
.4

Fig. 1. Scheme of radiomics analysis of radiation diagnostic images indicating the role of quality control system.
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parameters. H. Kim et al. [11] studied the effect of recon-
struction filters on radiomic signs identified from CT im-
ages of patients with lung cancer and concluded that the
relationship was statistically significant and reconstruction
settings should not be used interchangeably. N. Ohri et al.
[12] assessed the variability of radiomic characteristics ob-
tained from PET/CT under different modes of data collection,
algorithms reconstruction, post-filtration, and number of it-
erations. A total of 40 out of 50 signs were demonstrated to
have significant (up to 30%) variability. Variability of signs
can vary more significantly when performing MRI due to the
amplitude of the scanner gradient magnetic field, used pulse
sequence, contrast agent administration method, trajectory
sampling in k-space, and other factors [13]. Data quality
depends on reliability of data collection protocols used in
clinical centers, thus the effect of these changes on the sta-
bility of radiomic signs needs to be carefully investigated and
analyzed in future studies.

New methods of image processing

Image processing is the next step in radiomic signs ex-
traction. Thus, identification of a region of interest (ROI) and
volume of interest (VOI) is a fundamental task in oncological
practice [14]. Manual description by experienced roentgen-
ologists or radiologists is considered the gold standard, but
is time-consuming with a high degree of inter- or even intra-
operator variability. Automated or semi-automated methods
are often used, such as determining threshold values, clas-
sifiers, clustering, Markov models of random fields, artificial
neural networks, deformable models, and some others to
determine ROI [15].

Automation can provide new opportunities for segmenta-
tion techniques standardization; however, problems associ-
ated with complex anatomy or areas of low soft tissue con-
trast are still present, therefore manual adjustments by an
experienced physician are often required. One of the meth-
ods of semi-automatic segmentation, which avoids errors,
is the use of digital biopsy, in which only certain segments
are sampled based on intensity and texture values [16]. For
segmentation or selection of images, advanced machine
learning methods also emerged and used [17].

Several major initiatives aimed to develop automatic
segmentation solutions using deep learning. These include,
Google DeepMind, Microsoft Project InnerEye, and Mirada
DLCExpert. These automated segmentation tools showed to
increase efficiency in structure reconstruction, especially for
organs at risk [18, 19]. In the near future, deep learning-
based segmentation tools may become reliable enough for
routine research.

Extraction of signs, grouping, and data integration

Extraction of multidimensional datasets (radiomics signs)
is the main stage of radiomics to quantify the VOI highlighted
in the image [20]. Signs extracted from images can be di-
vided into static and dynamic groups.
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Characteristics of static signs. Static signs multitude
comprises two categories, morphological and statistical [21].
Morphological signs are used to define three-dimensional
(3D) shape characteristics such as volume and surface area,
as well as sphericity (the extent a 3D volume resembles a
sphere). Statistical signs are used to mathematically evalu-
ate the distribution of grayscale within an ROl or VOI. There-
fore, the first-order signs include the mean value, standard
deviation, percentiles, kurtosis, and asymmetry, which are
used to characterize the overall variability in intensity. Sec-
ond-order signs characterize the texture of selected area by
analyzing the relationship between individual voxels within
the ROI or area, i.e., exhibit local distribution.

Aspects of dynamic signs. Pharmacokinetic modeling
is commonly used to quantify the dynamic distribution of
a contrast agent or other indicator within a region (which
may be one or more voxels). In general, pharmacokinetic
modeling considers the contrast agent concentration as a
function of arterial input and residual contrast agent decay
within the ROI. The intravascular and interstitial space can
be modeled under different assumptions. For example, the
most widely used kinetic model, the Toft model, assumes
instant mixing of contrast in the intravascular and interstitial
space, whereas the extended Toft model takes into account
the effect of delayed contrast agent concentration in tissue.
The model of homogeneity of adiabatic tissue is explained
by the fact that contrast agent concentration in distribution
volume outside the vessels changes more slowly compared
to the intravascular space concentration. Thus, the model
assumes a finite transit time for contrast agents from arte-
rial phase to venous phase.

In general, existing analytical pipeline typically includes
thousands of extracted radiomics characteristics, and this
number is expected to grow with new available data. How-
ever, clinically significant signs include not all selected ones,
but the most reliable signs, correlating with clinical data for
the possibility of disease course prediction.

Calculation of correlations, identification
of prognostic factors

As in many other fields where the -omics suffix is used,
the number of input variables often far exceeds the num-
ber of patients. In order to reduce the probability of false
positive results, specific sign selection or search area size
reduction is required, and filter-based scoring approaches
are commonly used, such as Wilcoxon analysis and principal
component analysis. This can be implemented using either
one-dimensional methods, when the evaluation criterion de-
pends only on the object relevance, or multivariate methods,
when a weighted sum is used to maximize relevance and
minimize redundancy [22-25]. Object selection can also be
combined with object classification into one model.

Once a set of characteristics is obtained, a data-driven
model can be created. These models include controlled and
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uncontrolled approaches [21, 26]. Unmanaged analysis does
not provide a result variable, but rather a summary of infor-
mation. Most often, a thermal map is used for its graphical
display, on which cluster structures in data matrix are si-
multaneously detected. In contrast, in the course of moni-
tored analysis, models are created, that attempt to divide
the treatment outcome data. Typical classification methods
include traditional logistic regression or more advanced ma-
chine learning methods.

Isolated radiomic signs that correlate closely with clini-
cal data and molecular analysis results can be classified
as imaging biomarkers, whereas classical biomarkers are
obtained by histological and molecular examination of tu-
mor tissues, i.e., using invasive method, imaging biomarkers
provide non-invasive characterization of the pathology. In
addition, reliable indicators of normal or pathological pro-
cesses in tissues or tumor responses are available for any
intervention.

QUALITY CONTROL
AND STANDARDIZATION
OF PARAMETERS IN RADIOMICS

Measurement accuracy improvement is necessary
(Fig. 2) to ensure radiomic signs quality and imaging bio-
markers reliability, which is determined by the magnitude
of bias or absolute error of obtained data and variability of
values (repeatability and reproducibility, defined as disper-
sion of measured values). These indicators are achieved
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by introducing quality control tests in radiation diagnostic
departments, namely acceptance tests, periodic, and inter-
nal control tests (tests for parameter constancy) [27]. Ac-
ceptance tests are performed during equipment installation
to establish the compliance of tested characteristics with
the manufacturer’s limit values. In case of confirmation of
parameter conformity, the medical organization person-
nel perform the first tests for parameter constancy, during
which base values are established for further quality control.
Internal control or parameter constancy testing is essential
in the quality control system as it predicts deterioration in
diagnostic image quality. In Russia, periodic tests include
monitoring of extended list of parameters, and are per-
formed by certified testing laboratories.

In international practice, inclusion of technical personnel
in the staff of MRI, CT, PET/CT offices is common. For ex-
ample, a large role is assigned to medical physicists, whose
important task consist research optimization and standard-
ization, as well as radiation diagnostics equipment quality
monitoring and safe system organization during research
[28]. In Russia presence of such personnel in the staff of
radiation diagnostics rooms are currently not required, and
competencies to implement quality control for radiomics are
unnecessary for medical personnel.

Measures to ensure quality control of radiological di-
agnostic equipment are required to achieve reliability and
clinically acceptable repeatability of measurements, which
is supported by the Radiological Society of North America
(RSNA), the European Society of Radiology, etc. Thus, col-
laboration between members of the Quantitative Imaging

ADC (apparent
diffusion coefficient)
107 mm%/s
25
- ¥
Sources of low measurement 20 Norm
accuracy: Y 15
PROBLEM Inability to perform differential 1) equipment parameters;
| ) ADC )}
diagnostics 2) research protocols; 0.659+0 434 |
3) methods of reconstruction DAt 051
and post-processing; etc.
Monitoring indicators:
1) bias;
DECISION Improvement of measurement accuracy 2) variability (repeatability,
reproducibility)
Quality control system:
1) customization and periodic quality control
. 2) standardization of research protocols
ACTION Quality control 3) unified methodology for preparing a patient and ~ 5pc.
conducting a study 107 mm?/s
4) control of data segmentation and analysis 2
- 2.0
Ensuring high measurement accuracy ’ 15 Norm
RESULT Obtaining an imaging biomarker to pe_rfom_l radlpmlc_analysw and 3 § |
obtain reliable imaging biomarkers 10
to increase diagnostic value ADC
0.659+0.216 05}
oo .| Pathology

Fig. 2. Justification for quality control system implementation in radiomics.
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Network (QIN; USA) and National Institute of Standards and
Technology phantoms was developed for quality control in
clinical trials [29, 30].

Relationships are formed between revealed signs and
clinical data as a result of radiomic analysis to check the
model constructed and assess output information reliabil-
ity; it is validated for new patients [31, 32]. Literature data
are used, as well as dataset validation testing, or data from
other healthcare organizations to gain generalization pos-
sibility [31].

Standardization of study protocols

Following the standard methods of examination prepa-
ration, namely exclude foreign objects from the scan area
that contribute to distortion is necessary since MRI, CT, and
PET/CT images are susceptible to artifacts and noise; make
sure that the established rules for positioning the patient
are followed for better visualization. The patient should feel
comfortably motionless for a long time.

In addition, the voxel size and signal intensity have a
great influence on radiomic signs, therefore, ensuring the
standardization of protocols is important when setting up
the scan [32, 33]. The effect of reconstruction filters on im-
age quality and signal intensity should also be taken into
account, namely a filter should be chosen that does not lose
the useful signal and ensure high reproducibility of radiomic
signs when performing PET/CT and CT [34].

The image matrix is scaled and reduced to an isotropic
(square) form as part of image preprocessing [35]. Signal
intensity normalization to one scale is also recommended,
especially for MRI. For this purpose, statistical methods
are used, for example ANTsR and WhiteStripe [36]. Signal
intensity inhomogeneity phenomena may be encountered
when performing MRI, which are caused not by biological
properties of tissues, but by technical factors. In such cases,
correction for this heterogeneity is required, which should
be included in the quality control system of performed pro-
cedures.

Post-processing control

Tools and algorithms with proven accuracy of their work
should be used for post-processing process [36]. For exam-
ple, for the subsequent correct analysis of radiomic signs,
it is important to use high-quality tools at the segmentation
stage. Previously semi-automatic algorithms with manual
segmentation correction were used, but now more and more
algorithms based on artificial intelligence technologies [37]
appear, which must undergo appropriate tests [38].

Monitoring of isolated radiomic signs
and validation of imaging biomarkers

Principles of standardization and quality control of stud-
ies and procedures for pre- and post-processing of images
are required to ensure the quality (bias and variability) of
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radiomic signs, as well as reliability of imaging biomark-
ers [39].

At this stage, quality control tools are used, such as
phantoms, which enable the assessment of bias and repro-
ducibility of distinguished signs. Phantoms can be both digi-
tal and physical, made using substances of specified param-
eters [40, 41]. For example, for multicenter studies of breast
cancer, an appropriate phantom is used, which enables the
evaluation of study reproducibility and accuracy [42].

The phantom is scanned repeatedly under different
conditions, after which the variability of measurements is
calculated and compared with the threshold value that the
European Medicines Agency recommends, which is no more
than 15% to analyze the effect of the scanning parameters
on variability and methodology of study and post-processing
performance [39].

Accuracy is assessed in the process of studies on phan-
toms or on tissue samples and corresponds to the relative
error when the true value of signs (ground truth) and mea-
sured ones are compared. Setting the threshold value for
successful completion of assessment at the level of 15% is
recommended in the process of imaging biomarker valida-
tion [39].

This field of radiomics is under development, which
may become an effective method for diagnosing tumors
and predicting process analysis in the near future. We be-
lieve that the number of studies in this field will increase
with the introduction of artificial intelligence algorithms to
create relationships between the selected signs and clini-
cal data. However, without the implementation of the de-
scribed quality control approaches at all stages, obtaining a
solid evidence is impossible, i.e., data reproducible on other
populations, other equipment with a bias indicators within
the established limit. Phantoms were previously developed
for monitoring quantitative modes of MRI (with diffusion in-
dicators) and CT (with indicators of bone mineral density)
at the Center for Diagnostics and Telemedicine. From our
point of view, interaction with technical specialists (medical
physicists, engineers) and medical personnel is necessary
to develop phantoms with specified measurement accuracy
in planning a study of radiomic signs and further obtaining
imaging biomarkers in this work.

ROLE OF DEVELOPMENT
OF VISUALIZATION BIOMARKERS

In recent years, efforts were made to improve approach-
es to standardization of radiomic signs by defining standard
data collection protocols. Particular efforts for this were
made by the QIN created by the National Cancer Institute
(NCI), as well as RSNA, the Quantitative Imaging Biomarkers
Alliance (QIBA) and others. In 2010, NCI launched an initia-
tive of the Cancer Institute Centers for Quantitative Image
Excellence, and the creation of a National Clinical Trials Net-
work has become a key focus of this effort [43]. Centers for
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guantitative image improvement create PET/CT, CT, and MR
phantoms, as well as protocols for standardization, and QIBA
provides consensus decisions on the accuracy of quantita-
tive biomarker imaging measurements and requirements/
procedures necessary to achieve this level of accuracy [29,
35, 36, 44, 45].

Since the term “radiomics” appeared in the scientific lit-
erature, hundreds of published radiomics studies aimed to
improve the quality of diagnostics, treatment, and prognosis
of cancer. An increasing number of works demonstrate the
value of imaging biomarkers as an additional tool for clinical
decision-making and role of machine learning algorithms in
it [46].

One of the earliest applications of the radiomics-based
method is the successful detection of tumors in the imaging
of lung and breast cancers.

Breast cancer is a pathology that most often occurs in
women worldwide. Accurate diagnosis and early prediction of
treatment response are key aspects in clinical practice since it
is a well-known heterogeneous disease [47]. Several studies
used radiomics to predict breast cancer subtype or ER, PR,
Kié7, and HER2 status on mammography [48], PET/CT [49, 50],
and MRI [51, 52]. In addition to characterizing breast cancer,
radiomics may also provide a non-invasive approach to predict
metastases in the sentinel lymph nodes [53].

Most radiological research on breast cancer focuses on
therapy response evaluation. H.M. Chan et al. [54] devel-
oped an automated method using MRI to predict the absence
or insufficient response to treatment in patients with early
breast cancer. Most other studies attempted to obtain a
pathologic complete response (pCR) biomarker with neo-
adjuvant chemotherapy, a hot topic of discussion in studies
on breast cancer. Thus, N.M. Braman et al. [55] revealed
that intra- and peri-tumor characteristics found on dynamic
contrast-enhanced MRI can predict pCR prior to treatment.
Other studies also showed that TIWI, T2WI, and DWI can aid
in pCR detection [56, 57].

Radiological studies focused on the prognosis of breast
cancer are performed more and more frequently. For ex-
ample, H. Park et al. [58] developed an algorithm combining
MRI imaging biomarkers and clinical information to individu-
ally assess the survival ability of patients with breast cancer.

Lung cancer is the most dangerous type of cancer, and
its prevalence also continues to increase worldwide. Lung
cancer screening is one of the most important diagnostic
applications of radiomics. N. Nasrullah et al. [59] proposed
a deep learning model based on chest CT studies from the
LIDC-IDRI dataset and achieved good results in detecting
malignant lung nodules with a sensitivity of 94% and speci-
ficity of 91%. B.W. Carter et al. [60] conducted a screening
study of patients diagnosed with lung cancer in the National
Lung Screening Trial dataset using low-dose CT. They were
able to obtain predictive accuracy of 80% and 79% for nod-
ules that develop into malignant neoplasms in one or two
years, respectively.
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Radiomics enables the determination at the preoperative
stage in staging lung cancer by tumor nodules metastasis
(TNM) [61, 62], which is important for making a decision
about surgical intervention. In addition, the technique can
be used to detect specific genetic mutations in lung cancer,
such as the status for the Estimated glomerular filtration
rate gene [63] which can help medical specialists choose
the optimal therapeutic approach. X. Fave et al. used delta-
radiomic characteristics to predict outcomes in patients with
stage Il non-small cell lung cancer during radiation therapy
[64]. Their results suggest that changes in radiomic charac-
teristics due to radiation therapy will be indicative of tumor
response. T.P. Coroller et al. [65] established that radiomic
signs of CT before treatment can predict a pathological re-
sponse after neoadjuvant chemoradiation therapy in patients
with advanced non-small cell lung cancer.

In recent years, radiomics are increasingly used for diag-
nostics, treatment response prediction, and long-term out-
comes of tumors of the nervous system [26, 66, 67], head
and neck [68, 69], gastrointestinal tract [70, 71], prostate
cancer [72, 73], and some other forms of oncological dis-
eases [74].

CONCLUSION

Early detection and identification of tumors, their hetero-
geneity, and phenotypic signs can be invaluable in patient
stratification, subsequent treatment options determination,
and effects prediction. Radiomic analysis of diagnostic stud-
ies provides information necessary for this, but only under
conditions of high-quality collected and processed data. All
of these processes need to be standardized and optimized
using a variety of quality control methods, and at each stage,
from image acquisition to validation of imaging biomarkers.
In addition, clinical information must be taken into account,
based on which the search for clinical correlations is per-
formed to establish the prognostic value of biomarkers. Only
the qualitative fulfillment of all these criteria can make the
biomarker imaging tool really useful for doctors and neces-
sary for patients.
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