OPUMHATTBHBIE MCCIEJOBAHA T.5, N1, 2024 Digital Diagnostics
DOI: https://doi.org/10.17816/DD623801 .

Knaccudukauma cHUMKOB onTUYMECKOW KOrepeHTHOM Shocktor
ToMorpacguu ¢ ucnoab3oBaHMeM MeToA0B rnybokoro
MaLUMHHOro 06y4yeHus
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akapemuka C.H. ®épnoposa», TaMbos, Poccus;

3 TaMB0BCKUI rocyapCTBeHHbIN yHuBepcuTeT umenn .P. [epxasuHa, Tambos, Poccua

AHHOTALIUA

06ocHoBaHMe. OnTiYecKan KorepeHTHast TOMOrpagua — COBPEMEHHBINA BbICOKOTEXHOOMMYHBIA U UHOPMATMBHBIA MeTo[,
BbISIB/IEHWS MATONIOMMW CETHATKU N1a3a U NpepeTUHaNbHbIX CI0EB CTEKI0BMAHOMO Tenla. OfHaKo onucaHue 1 MHTepnpeTauus
pe3ynbTaToB UCCef0BaHUA TPebYIT BbICOKOM KBanU(UKaLMM U cneumanbHoOM NOAroTOBKM Bpaya-odTanbMosiora, a Takke
3HauuUTeNbHBIX BPEMEHHBIX 3aTpaT Bpada M nauueHTa. BMecTe ¢ TeM ucnonb3oBaHWe MaTeMaTUYeCKUX MOJENEN Ha OCHOBE
annapara MCKYCCTBEHHBIX HEMPOHHbIX CETEl B HACTOALLEE BPEMS MO3BOJISIET aBTOMATU3MPOBaTL MHOMME NPOLLECChl, CBA3aH-
Hble ¢ 06paboTKoi 130bpaeHuii. IMeHHO NO3TOMy aKTyaNbHO peLUeHWe 3afad, CBA3aHHbIX C aBTOMaTM3auMeid npolecca
KnaccuduKaLumMm CHUMKOB OMTUYECKOW KOTePEHTHOI ToMorpadumu Ha ocHoBe rybokoro obyueHns Mogenen UCKYCCTBEHHbIX
HEMPOHHBIX CETEMN.

Llenb — pa3pabotaTb apxuTeKTypbl MaTeMaTU4eckux (KOMMbOTEPHbIX) MOZENel Ha OCHOBE ryboKoro 0bydyeHus cBEpTOY-
HbIX HEMpOHHBIX CeTel, NpeAHa3HaueHHbIX LI KnaccUUKaLmMM CHUMKOB OMTUYECKON KOTePEHTHOW ToMorpadmm ceTyaTku
rnasa; CpaBHUTb Pe3ynbTaThl BbIMUCIIUTENBHBIX 3KCMEPUMEHTOB, NPOBEAEHHBIX C UCMONb30BaHMeM cpefcTe Python B Google
Colaboratory npu ofHoO- M MHOTOMOZENBHOM MOAXOAAX, W BbIMOSHUTL OLEHKM TOYHOCTU KNaccuuKaumu; caenatb BbIBOAbI
06 onTMManbHOW apXUTeKType MoJenei MCKYCCTBEHHBIX HEMPOHHBIX CETEM W 3HAYeHMSX UCMOMb3yeMbIX rMnepnapamMeTpoB.
Marepuanbl U MeToapl. VcxoaHbIl faTaceT, NpeacTaBnsoLLmMA cob0i 006€3NIMYeHHbIE CHUMKU ONTUYECKOW KOrepeHTHOM To-
Morpaduu peanbHbIX nauueHToB, BKItovan tonee 2000 mM3obpaxeHWH, NoNy4eHHbIX HEMOCPeACTBEHHO ¢ npubopa B pas-
pewenun 1920x969x24 BPP. KonuyecTtBo KnaccoB usobpawenun — 12. [lna cospanus obyyaioliero U BanuaaLMOHHOMO
HabopoB JaHHbIX OCYLLECTBNIANM «Bblpe3aHue» npeaMeTHoi obnactu 1100x550x24 BPP. W3yuanu pasnuuHble nogxopnbi:
BO3MOXHOCTb WUCMOb30BaHUS NpefobyyeHHbIX CBEPTOYHbIX HEMPOHHBIX CETel C NEPEHOCOM 0bY4eHUs, METOANKU U3MEHeE-
HWA pa3Mepa M ayrMeHTaumu u3obpaxkeHui, a TaKKe pasfMyHble COYETaHWs runeprnapameTpoB Mofenen UCKYCCTBEHHbIX
He/pOHHbIX ceTel. [pu KoMNUNALMK MOAENM UCMONb30BaNM CleAyloLLMe NapaMeTpbl: onTuMu3atop Adam, gyHKuMIO noTepb
categorical_crossentropy, MeTpuKky accuracy. Bce TexHonornyeckue npouecchl ¢ M300paXeHUsIMU U MOJENSAMM UCKYCCTBEH-
HbIX HElipOHHbIX CETEN NMPOBOAMIM C UCMONb30BaHUEM cpeAcTB A3blka Python B Google Colaboratory.

Pe3ynbtathl. [lpeanoxeHsl 0AHO- U MHOMOMOAEMbHBIA MPUHLMIBI KNaccubUKaumum U300paeHnin ONTUYECKOW KOrepeHT-
HOM TOMorpaduu ceTyaTku rnasa. BelumcnuTenbHbIE 3KCMEPUMEHTLI N0 aBTOMATU3MPOBAHHOM KNACCMUKALMU TaKWX WU30-
bpaxeHui, nonyyeHHbix ¢ Tomorpada DRI OCT Triton, ¢ Mcnonb3oBaHWeM Pa3fMYHbIX apXUTEKTYp MOLenei UCKYCCTBEH-
HbIX HEWpOHHbIX CETEW MOKasanu TOYHOCTb npu 0byyeHun u Banupaumm 98-100%, v Ha pononHuTenbHoM Tecte — 85%,
uYTO AB/IAETCA YAOBNETBOPUTENBHBIM pe3ynbTaToM. BbibpaHa onTuManbHas apXUTeKTypa MOAENW UCKYCCTBEHHOIM HEMPOHHOM
CET — 6-CNONHaA CBEPTOYHAA CETb, — M ONpefeneHbl 3HaYeHUs e€ r1nepnapameTpos.

3aknovenune. Pesynbtathl rnybokoro 0byyeHus Mopeneit CBEPTOYHbIX HEMPOHHBLIX CETEN C PA3/IMYHON apXUTEKTYPOM, WX
Ba/MAaUMM M TECTUPOBAHMA MOKa3anmn yA0BNETBOPUTENBHYIO TOYHOCTb KNACCUPUKALMM CHUMKOB ONMTUYECKON KOTepEHTHOI
ToMorpadmm cetyatku rnasa. [laHHble pa3paboTku MoryT ObiTb MCMONb30BaHbl B CUCTEMAX MOAAEPHKM NPUHATUS peLLeHUi
B 0bniacTn odTanbmMonoruu.

KnioueBble cnoBa: VICKYCCTBEHHbIVI WHTENNEKT, MeJULUMHCKWE [aHHble; OaTaceT; MallMHHOoe oﬁyqume; CBépTO‘-IHbIe
HeVIPOHHbIe CeTH; onThyecCcKana KorepeHTHas TOMOFpadJVIFI.
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Classification of optical coherence tomography
images using deep machine-learning methods
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ABSTRACT

BACKGROUND: Optical coherence tomography is a modern high-tech, insightful approach to detecting pathologies of the retina
and preretinal layers of the vitreous body. However, the description and interpretation of study findings require advanced
qualifications and special training of ophthalmologists and are highly time-consuming for both the doctor and the patient.
Moreover, mathematical models based on artificial neural networks now allow for the automation of many image processing
tasks. Therefore, addressing the issues of automated classification of optical coherence tomography images using deep
learning artificial neural network models is crucial.

AIM: To develop architectures of mathematical (computer) models based on deep learning of convolutional neural networks
for the classification of retinal optical coherence tomography images; to compare the results of computational experiments
conducted using Python tools in Google Colaboratory with single-model and multimodel approaches, and evaluate classification
accuracy; and to determine the optimal architecture of models based on artificial neural networks, as well as the values of the
hyperparameters used.

MATERIALS AND METHODS: The original dataset included >2,000 anonymized optical coherence tomography images of
real patients, obtained directly from the device with a resolution of 1,920x969x24 BPP. The number of image classes was
12. To create the training and validation datasets, a subject area of 1,100x550x24 BPP was “cut out”. Various approaches
were studied: the possibility of using pretrained convolutional neural networks with transfer learning, techniques for resizing
and augmenting images, and various combinations of the hyperparameters of models based on artificial neural networks.
When compiling a model, the following parameters were used: Adam optimizer, categorical_crossentropy loss function, and
accuracy. All technological operations involving images and models based on artificial neural networks were performed using
Python language tools in Google Colaboratory.

RESULTS: Single-model and multimodel approaches to the classification of retinal optical coherence tomography images
were developed. Computational experiments on the automated classification of such images obtained from a DRI OCT Triton
tomograph using various architectures of models based on artificial neural networks showed an accuracy of 98—100% during
training and validation, and 85% during an additional test, which is a satisfactory result. The optimal architecture of the model
based on an artificial neural network, a six-layer convolutional network, was selected, and the values of its hyperparameters
were determined.

CONCLUSION: Deep training of convolutional neural network models with various architectures, as well as their validation and
testing, resulted in satisfactory classification accuracy of retinal optical coherence tomography images. These findings can be
used in decision support systems in ophthalmology.

Keywords: artificial intelligence; medical data; dataset; machine learning; convolutional neural networks; optical coherence
tomography.
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BACKGROUND

Optical coherence tomography (OCT) is a modern,
high-tech, conclusive method for detecting retinal and
preretinal vitreous abnormalities [1]. However, describing
and interpreting the examination results requires highly
skilled and trained HCPs and a considerable duration on the
part of ophthalmologists and patients. Therefore, we must
solve issues associated with the automation of OCT image
classification.

Computerized tools and technologies are rapidly
evolving to build artificial intelligence (Al) systems based
on neural networks with various architectures, for medical
[2, 3] and general use [4-6]. In the past decades, advanced
ophthalmology centers have created repositories of patient
data with hundreds of thousands of OCT images, paving
the pathway to (i) search for generalized dependencies
and relationships between individual parameters and (ii)
construct fundamentally new, science-based approaches for
identification, classification, calculation, and prediction, all of
which are almost always centered on a mathematical model.

In one of our papers, we have already described
computerized methods for the examination of the vitreous
body, identification and approximation of the retinal border,
determination of its curvature, calculation of average retinal
thickness, among others; one of these methods include
artificial neural networks (ANNSs) [7]. This study is a logical
continuation of that research and presents results of OCT
image classification achieved via convolutional neural
networks (CNNs) using single- and multi-model approaches.

There have been many publications on similar topics. For
example, Yu. A. Vasiliev et al. [8] developed a general, Al-
based methodology for software testing and monitoring in
medical diagnostics. The methodology enhanced the quality
of this software and implementation in clinical practice. It
consisted of seven steps: self-testing, functional testing,
calibration testing, process monitoring, clinical monitoring,
feedback, and improvement. The methodology was
characterized by the cyclical phases of testing, monitoring,
and improving the software for continuous improvement of
software quality, detailed requirements for outcomes, and
involvement of HCPs in software evaluation. The methodology
allowed software developers to achieve remarkable results
in various areas and enabled users to make informed and
confident choices from programs that passed an independent
and comprehensive quality check.

Katalevskaya et al. [9] developed algorithms for
segmentation of visual signs of diabetic retinopathy
and diabetic macular edema in digital fundus images
acquired using a fundus camera. Features included in the
International Classification were selected for segmentation:
microaneurysms, hard exudates, soft exudates, intraretinal
hemorrhages, retinal and optic disc neovascularization,
preretinal hemorrhages, epiretinal membranes, and laser
coagulates. Neural networks were implemented and trained
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using the deep-learning framework TensorFlow (Google
Brain, USA). The training database contained 1,200 images,
and 310 fundus images were used for validation. The
accuracy of identifying these features by the trained model
ranged from 86% to 96%.

T. Kerr et al. [10] described a home monitoring system
for age-related macular degeneration. CNNs were used to
segment the entire retina and pigment epithelial detachments.
The dataset of 711 images was divided into training/validation/
test image sets in the ratio of 60%:20%:20%. The CNN-based
approach reportedly provided accurate retinal segmentation.

Sakhnov et al. [11] developed a cataract screening model
based on an open dataset to validate the model based on
clinical data. The open dataset comprised 9,668 images
acquired using a smartphone camera, of which 4,514 were
for “cataract” eyes and 5,154 for “healthy” eyes. The external
validation set included 51 cataract and normal images. A
machine learning model was built using CNN. The accuracy
of data classification was 97% for the internal validation set
and 75% for the external validation set. These authors noted
predictive value to be low and concluded that they needed to
refine their model to meet the performance metrics.

Shukhaev et al. [12] employed the pretrained networks
ResNet-18, ResNet-50, VGG16, VGG19, and GoogleNet to
solve the problem of using CNNs for automatic detection
of Fuchs’ dystrophy. A random sample (n = 700) of corneal
biomicroscopic images was obtained using a Tomey EM-
3000 endothelial microscope (Tomey Corporation, Japan). In
the first step, the images were categorized into two groups:
the first group included images showing Fuchs’ dystrophy,
whereas the other one included normal images or images of
other abnormalities. The images of the endothelial cell density
were arranged into three categories: training, validation, and
test datasets. The following F-metric values were obtained
while testing the neural network on a test sample for
various CNN architectures: ResNet-18, 0.985; ResNet-50,
1.000; VGG16, 0.940; VGG19, 0.990; and GoogleNet, 0.987.
ResNet-50 demonstrated the optimum performance with
ImageNet data that had frozen layers, Adam optimization
algorithm, and cross-entropy as the loss function.

Therefore, a brief analysis of the abovementioned studies
allowed us to conclude the prospects of use of CNN-based
ANN models for retinal OCT image classification.

AIMS

Our objectives were:

1. to develop architectures of mathematical (computerized)
models based on deep-learning CNN for classifying OCT
images using the libraries Python Keras and TensorFlow
in Google Colaboratory,

2. to compare the results of computational experiments to
classify OCT images obtained using single- and multi-
model approaches and to evaluate the accuracy of such
classifications, and
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3. to conclude on the optimal architecture of ANN models
regarding classification accuracy and the hyperparameter
values used.

MATERIALS AND METHODS

The initial dataset comprised anonymized OCT images
of real patients and included 1,004 images directly obtained
as JPG files from the DRI-OCT Triton tomograph (Topcon
Corporation, Japan) at a resolution of 1,920 x 969 x 24
BPP. For classification purposes, the entire dataset was
categorized into the following 12 classes by experienced
ophthalmologists:
1. Normal
Cystoid macular edema
Neuroepithelial detachment
Pigment epithelial detachment
Hard exudates
Epiretinal membranes
Vitreomacular adhesion
Posterior vitreous detachment
Full-thickness macular hole + epiretinal membrane
10 Hard exudates + cystoid macular edema
11. Pigment epithelial drusen
12. Lamellar macular hole + epiretinal membrane
The number of images in each class corresponded to the
incidence of the corresponding abnormality in the patients.
In subsequent computational experiments, new OCT images
were added to the dataset, following which the total number of
images exceeded 2,000. A fragment of 1,100 x 550 x 24 BPP
was cropped from the entire subject area image to create
the training, validation, and test datasets. In computational
experiments, the entire data set was usually divided into
training, validation, and test sets in the ratio of 70%:20%:10%.
The following technological methods were also used:
» Image rescaling using filters NEAREST, BILINEAR,
BICUBIC, and LANCZ0S

- Data augmentation via various options, such as
image rotation by a given angle, shifting the image
along the X and Y axes, horizontal and vertical
rotation, and changing the brightness of the image
channel

The optimum results in this study were obtained with
the simplest NEAREST filter, which uses the parameters
of nearest pixel. More complex filters that approximate
the region using different methods gave poorer results,
apparently because small image details important for
classification were lost during the smoothing process.

The following parameters were used while compiling the
model:

» Adam optimizer as one of the most effective

optimization algorithms

» Categorical_crossentropy loss function

« Accuracy metric as percentage of correct answers

given by the algorithm

(1) 2024
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The accuracy metric is usually used to solve
classification problems when the number of images
between the groups is balanced. Herein, we estimated an
overall average because of the small number of images
in the training and test sets. Python language tools
were used in Google Colaboratory for all technological
processes with the models.

RESULTS

Preliminary computational experiments

Herein, we evaluated the effectiveness of various
approaches to OCT image classification (such as the
possibility of employing pretrained networks and transfer
learning), image rescaling and augmentation techniques, and
combinations of ANN model hyperparameters (number of
convolutional and fully connected layers, batch size, among
others).

For pretrained neural networks based on MobileNetV2
and MobileNetV3, the accuracies were 95%—-98%, 61%—80%,
and 41%-59% on the training, validation, and test sets,
respectively. The image was scaled to 224 x 224 pixels to
fit MobileNet.

Moreover, the abilities of different pretrained neural
networks to learn using the given dataset were compared with
transfer learning. The validation results were 80%, 81%, 79%,
and 80% for MobileNetV2, ResNet101V2, InceptionResNetV2,
and NASNetLarge, respectively.

For multilayer CNNs with traditional architecture
(several Conv2D convolutional layers, each with a
MaxPooling2D subsampling function, transforming the
data pools into a one-dimensional Flatten tensor and
several fully connected Dense layers), the accuracy
of 70%-100% was achieved on the training set with a
reasonable selection of epoch number. Comparatively, in
the validation set, this number was considerably lower
and had a wider range (35%-94%). In both cases, the
validation accuracy was higher than the training accuracy,
which may be ascribed to considerable heterogeneity in
the training and validation datasets. The test accuracy was
even lower, ranging from 27% to 59%, which is obviously
not a satisfactory result.

The following conclusions were drawn after the
preliminary experiments:

« The training set was unbalanced and heterogeneous
and required correction and supplementation with new
images.

+ Although transfer learning models showed slightly
better classification results, these results were
inappropriate for ophthalmology practice. In addition,
there were not many opportunities for improvement
because of the freezing of the first hidden layers.

+ The hyperparameters and the classification approach
must be optimized to achieve acceptable classification
accuracy.

7816/DD623801
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Computational experiments: a single-model
approach

Based on the preliminary experiments, new OCT images
were added to the dataset, after which the total number of
images increased to >2,000. The experiments tested various
architectures of multilayer sequential CNNs, such as Several
Conv2D convolutional layers, each with a MaxPooling2D
subsampling layer and a layer that transformed into a one-
dimensional Flatten tensor, and two fully connected Dense
layers, the latter featuring the Softmax neuron transfer
function suitable for solving classification problems.

The maximum number of convolutional layers is seven
for a normalized image resolution of 512 x 512 pixels. All
images in the dataset were rescaled using the Rescale
tool. We tested CNN structures with two—seven such layers
(Table 1) with simultaneous selection of the size and number
of filters in the layers. Training was performed (typically
with epochs = 15, BATCH_SIZE = 50, optimizer = “Adam,”
loss = “categorical_crossentropy,” and metric = [“accuracy”])
for all computational experiments, as well as for validation
and additional testing with images not previously included in
the dataset.

Acceptable training and validation accuracies were
achieved for almost all ANN models, except for the two-layer
model (Table 1). However, the additional testing accuracy first
increased with increasing number of convolutional layers,
reaching a maximum value of 85% for the six-layer model
and decreasing for the seven-layer model. Notably, the
models presented here are currently positioned solely as a
decision support system for an ophthalmologist. Considering
that the dataset contained a limited number of images of
various abnormalities, we accepted the level of 85% as

Vol 5 (1) 2024

Digital Diagnostics

sufficient for images to be classified by an ophthalmologist
with limited experience. We concluded that an optimal
number of layers was required for accuracy, which in this
case was 6. However, this value may later change because
new data will be added to the dataset and models will be
retrained.

Fig. 1 shows the processes of ANN model training and
validation with four to seven convolutional layers. The training
process was completed in 9 epochs when four and five
convolutional layers were used, achieving 100% training and
validation accuracies. However, the accuracy of the additional
test was only 65%-70% (Table 1). The training process was
longer and consisted of 15 epochs when using a model
with six convolutional layers, achieving 100% training and
validation accuracies. However, accuracy in the additional
test increased to 85%, which was considered satisfactory.
Upon further increasing the number of convolutional layers
to seven, the process for ANN model training and validating
consisted of >15 epochs, while the training accuracy was
100%, and the validation and testing accuracies decreased
to 89% and 74% (Fig. 1 and Table 1).

Fig. 2 shows the architecture of the optimal ANN model
concerning the accuracy of retinal OCT image classification. It
includes six Conv2D convolutional layers with MaxPooling2D
subsampling, a Flatten layer, and two fully connected Dense
layers that act as classifiers, the latter featuring the Softmax
neuron transfer function.

The lower classification accuracy in testing (compared
with training and validation accuracies) is explained as
follows: relatively small datasets of ~2,000 images were
used to train the models, which did not contain a full set of
graphical details characteristic of a particular abnormality. If
such details are found in the test dataset, the classification

Table 1. Comparison of various sequential artificial neural network models

N“"‘be.r Number Training Validation | Additional testing
of convolutional | of parameters | accuracy, 0 0 Note
. 0 accuracy, % accuracy, %
layers to be optimized %
2 31 844 921 13 0 0 The ANN model is not trained well.
Number of ANN model training epochs: >15;
3 13 401 045 7 100 5 number of filters in CNN layers: 3/8/16
Number of ANN model training epochs: 9;
3 15215 889 100 100 62 number of filters in CNN layers: 4/8/16
Number of ANN model training epochs: 12;
3 13401933 100 100 64 number of filters in CNN layers: 5/8/16
4 6 929 729 100 100 65 Number of ANN model training epochs: 12
5 1430 977 100 100 70 Number of ANN model training epochs: 9
6 556 673 100 100 85 Number of ANN model training epochs: 15
7 132 801 100 89 74 Number of ANN model training epochs: >15
8 a B B B 8 CNN layers cannot be used for the accepted

image size

Note. ANN, artificial neural network; CNN, convolutional neural network
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Fig. 1. Training and validation of convolutional neural network models with: @ — four, b — five, ¢ — six, and d — seven convolutional
layers.
[ ] model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(4, (9,9), activation='relu’, input_shape=(IMG_SHAPE, IMG_SHAPE, 3)),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(8, (5, 5), activation="relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(16, (3, 3), activation="relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(32, (3, 3), activation="relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(32, (3, 3), activation="relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Conv2D(64, (3, 3), activation="relu'),
tf.keras.layers.MaxPooling2D(2, 2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(225, activation="relu'),
tf.keras.layers.Dense(12, activation='softmax')
1)

Fig. 2. Architecture and parameters of a six-layer convolutional artificial neural network model: the first number in Conv2D denotes the
number of filters to be used in the convolution layer. The next two numbers represent the size (in pixels) of the filters. The activation
functions of the network neurons are Relu and Softmax in the output classification layer. The first number in the fully connected Dense

layer represents the number of neurons.
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may be deemed incorrect even when the ANN model
validation accuracy is 100%.

Preliminary computational experiments:
a multimodel approach

Following the general logic of the study and considering
the need to increase the accuracy of additional testing,
0.L. Fabrikantov and Ye.V. Kulagina proposed a sequential
scheme that usually imitates the process of identifying a
retinal OCT image by an ophthalmologist. Accordingly, a
computer algorithm was developed (Fig. 3).

This algorithm is based on the sequential implementation
of multiple models (Fig. 3). In Step 1, images were
preprocessed (Blocks 1-3). In Block 4, ANN Model 1 was
used, which was designed for a preliminary classification to

1
Enter a patient OCT image,
jpg format,
size 1,920 x 969 x 24 BPP

— 1
Cut a target fragment
sized 1,100 x 550 with 540,
140-1640, 690 coordinates

—3 L

Reduce the fragment size
to the required X x Y size

Save the result: S1

an abnormal one.

4
Classification: ANN MODEL 1 is trained
ANN MODEL 1 == to distinguish a normal image from

Any abnormality?

6
Classification: ANN MODEL 2 is trained to distinguish
ANN MODEL 2 —--- between the presence or absence of a
Save the result: 52 macular hole.

Is a macular
hole present?

8
Classification:
ANN MODEL 3
Save the result: S3

ANN MODEL 4 is trained to detect

9
Classification: : g
ANNMODEL: |- one of three options: cystoid macular edema
Save the result: Sk (CMO), diffuse macular edema (DME), non-

CMO and non-DME.

ANN MODEL 3 is trained to distinguish
———- between a full thickness macular hole
and a lamellar macular hole.
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distinguish between normal and abnormal images. The result
of this classification was saved (S1). Such a model should
be trained and validated on a special dataset 1 containing
only two corresponding image classes. When no abnormality
was detected (Block 5), we proceeded to Step 4 (examination
of the vitreous body), bypassing all intermediate steps. As
in Block 6, ANN model 2 was used, which is trained on a
special dataset 2, to detect a macular hole. The result was
saved (S2). If there was a macular hole (Block 7), then in
Block 8, based on ANN model 3, also trained using a special
dataset 3, we determined whether there was a full-thickness
or lamellar macular hole. The results were saved (S3), after
which we proceeded to Step 2.

If there was no macular hole (Block 7), we proceeded
to Block 9, which used ANN model 4 trained on a special
dataset 4 to detect one of the following three: cystoid macular

Classification:

10,
ANN MODEL 5
Save the result: S5

®
0)

between three options: neuroepithelial
—--- detachment (NED), pigment epithelial
detachment (PED), and absence of NDE

|| ANN MODEL 5 is trained to distinguish
and PDE

11 -
Classification: ANN MODEL 6 is trained to distinguish
ANN MODEL 6 ——-- between the presence or absence of
Save the result: S6 epiretinal membrane.
12
K:ﬁs&g;‘éﬂ | ANNMODEL 7 s trained to distinguish
between the presence or absence of drusen.
Save the result: S7
11 -
Classification: ANN MODEL 8 is trained to distinguish
ANN MODEL 8 —--- between the presence or absence of hard
Save the result: S8 exudates.

0)

@
Classification:
ANN MODEL 9 —
Save the result: S9
[ E—

Creation of a list of patient
abnormalities S1-S9

/V(]utput of a patient's OCT report

ANN MODEL 9 is trained to distinguish
between normal image, posterior vitreous
detachment (PVD), vitreomacular adhesion,
and vitreomacular traction.

to MS Word file

Fig. 3. Flowchart of a multimodel algorithm for optical coherence tomography image identification; ANN, artificial neural network; OCT,

optical coherence tomography.
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edema, diffuse macular edema, or their absence. The result
was saved (S4), after which we proceeded to Step 2.

Step 2 used ANN model 5 (Block 10) trained on a special
dataset 5 to detect one of the following three: neuroepithelial
detachment, pigment epithelial detachment, or their absence.
The result was saved (S5), and we proceeded to Step 3 for
the analysis and classification of OCT images.

In Step 3, ANN models 6, 7, and 8 were sequentially used.

+ ANN model 6 (Block 11) was trained on a special

dataset 6 to detect the presence or absence of
epiretinal membranes.

» ANN model 7 (Block 12) was trained on a special

dataset 7 to detect the presence or absence of drusen.

« ANN model 8 (Block 13) was trained on a special

dataset 8 to detect the presence or absence of
exudates.

The corresponding results were also saved (S6-S8) in
Blocks 11-13, after which we proceeded to Step 4.

In Step 4, ANN model 9 (Block 14) was used, trained on a
special dataset 9 to detect normal images, posterior vitreous
detachment, vitreomacular adhesion, and vitreomacular
traction, and the results were saved (S9). In Blocks 15 and
16, a general list of abnormalities was generated based on
the previously saved S1-S9 data, and a report describing an
OCT map was generated as a file.

DISCUSSION

In the described approach, nine different ANN models
are used to classify abnormalities in OCT images, each
model trained in its unique dataset (1-9). In the final step
of examination of the vitreous body, the algorithm described
earlier [7] can be used rather than the ANN model 9. It
includes:

» vertical scanning of the image and determining the X

and Y coordinates of the vitreous body borders,

« smoothing Y coordinates via the moving-average
method with a base corresponding to minimum details
of the image (10 pixels in our case), via approximation
of the vitreous body border with a spline or parabola
of the appropriate order, and

+ calculating maximum border curvature and the
corresponding distances to identify posterior
vitreous detachment, vitreomacular adhesion, and
vitreomacular traction.

Herein, a multimodel algorithm (Figure 3) was tested
with an increasing number of OCT images in the datasets
and optimized hyperparameters of ANN models. Preliminary
computational experiments conducted for several steps
of this algorithm indicated that 98%-100% accuracy can
be achieved on training and validation sets with increased
additional testing accuracy compared with the single-model
approach, owing to the reduced number of factors classified
at each step. Contextually, a single architecture with seven
convolutional layers was used for all ANN models 1-9. The
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only difference is that they were trained on unique datasets
and had different sets of coefficients of interneuronal synaptic
junctions.

CONCLUSION

Single- and multi-model approaches were proposed
for the classification of retinal OCT images. Computational
experiments on automatic classification of such images
obtained using a DRI-OCT Triton tomograph with various ANN
model architectures indicated 100% accuracy on training and
validation datasets and 85% for additional testing. This result
is considered satisfactory. The ANN model with optimal
architecture (6-layer CNN) was selected, and values of the
corresponding hyperparameters were determined, further
developing decision support systems for use in ophthalmology.
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