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ABSTRACT

BACKGROUND: Digital screening mammography is a key modality for early detection of breast cancer, reducing mortality by
20-40%. Many artificial intelligence (Al)-based services have been developed to automate the analysis of imaging data.

AIM: The aim of the study was to compare mammography assessments using three types of Al services in multiple versions
with radiologists’ conclusions.

MATERIALS AND METHODS: Binary mammography scoring scales were compared with several types and versions
of Al services regarding diagnostic accuracy, Matthews correlation coefficient, and maximum Youden's index.

RESULTS: A comparative analysis showed that the use of a binary scale for evaluating digital mammography affects the number
of detected abnormalities and accuracy of Al results. In addition, diagnostic accuracy was found to be threshold dependent.
Al Service 1in version 3 had the best performance, as confirmed by most diagnostic accuracy parameters.

CONCLUSION: Our results can be used to select Al services for interpreting mammography screening data. Using Youden’s
index maximization to set up an Al service provides a balance of sensitivity and specificity that is not always clinically relevant.

Keywords: malignant tumors of breast; digital mammography; artificial intelligence services; diagnostic accuracy; Youden's
index.
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AHHOTALINA

06ocHoBaHue. LindpoBas CKpUHMHIOBas MaMMorpama — 3T0 OCHOBHOW MHCTPYMEHT AJ11 PaHHEro BbSBNEHWS 3/10Kaye-
CTBEHHbIX HOBOOOPA30BaHW MONIOYHOM Kene3bl, MO3BOMAKLIMIA CHU3MTL CMepTHOCTb Ha 20—40%. Ha ceropHswHWiA feHb
pa3paboTaHo MHOKECTBO CEpPBMUCOB Ha OCHOBE MCKYCCTBEHHOr0 MHTennekTa (MK), no3sonsiowmx aBToMaTM3npoBaTh aHanms
TaKUX UCCNEeA0BaHUN.

Lenb — cpaBHUTL pe3ynbTaThl OLEHKW LMGPOBLIX MaMMorpaduyeckux UccnenoBaHuin, BoINoSHeHHoW TpeMs Tunamu UN-
CEPBUCOB B HECKOJBKMX BEPCUAX, C 3aKIIOYEHNAMM Bpayenl-peHTreHoN0roB.

Matepuansl u Metoabl. [poBefeHo cpaBHeHWe BUHAPHBIX LWKan OLEHKU MaMMorpadUyecknx MCCiefoBaHNin U HECKOMbKUX
TMNoB U Bepcuin MM-cepBuUCOB MO NOKa3aTeNiM AMarHOCTUYECKOW TOYHOCTH, Ko3adduumeHTy MaTbloca M MaKcUManbHOMY
uHaekcy H0neHa.

Pesynbtatbl. CpaBHUTENbHbINM aHanM3 NoKasar, YTo Bbibop BUHAPHOI LWKanbl 418 OLEHKW LppoBOro MaMMorpauyecKoro
UCCNEe0BaHUA BNMSET HA KONIMYECTBO BbISABNISIEMbIX C/ly4aeB NaToiorum M TOYHOCTb pesynbtatoB M-cepsucos. Kpome Toro,
obHapy»eHa 3aBUCUMOCTb NOKa3aTeneid AUarHoCTUYeCKOi TOUHOCTH OT NOPOroBOro 3HaueHus. Haunyuleil npoussoauTess-
HoCTbio 06napaet MA-cepeuc 1 B Bepcum 3, 4TO NOATBEPKAAETCA BONBLUMHCTBOM MOKa3aTeneil AUarHoCTUHECKOM TOYHOCTMW.
3akuitoyenue. [NonyyeHHble HaMu pe3ynbTaThl MOTYT BbITb MonesHbl npu Boibope UN-cepBucoB ans wHTepnpeTaumn faH-
HbIX CKpUHWUHroBOW Mammorpaduu. Hactpoika UN-cepBuca MeTofoM MakcuMm3aumm uHaekca l0aeHa no3sonseT nonyyatb
cbanaHcMpoBaHHble 3HAYEHUS! YYBCTBUTENBHOCTU M CMEUMMUYHOCTM, YTO He BCErAa LienecoobpasHo ¢ KIMHUYECKOW TOUKM
3peHus.

KnioueBble cnoBa: 310Ka4yeCcTBEHHbIE HOBOOﬁp&BOBBHMH MOJI0YHOW XKenesbl; LlVIquUBaﬂ MaMMOI'paCI)Mﬂ; CepBUCbI NCKYC-
CTBEHHOr0 MHTENINEKTa; NOKa3aTenu AMarHoCTUYeCKOM TOYHOCTH; MHaeKkc H0neHa.
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BACKGROUND

In  X-ray radiography, digital mammography
is the primary diagnostic tool and the sole method
of breast cancer screening. Screening lowers cancer
mortality by 20%-40% by enabling much earlier diagnosis
of cancer-associated abnormal mammary gland
changes [1]. As artificial intelligence (Al) evolves, novel
Al-based systems and services are being introduced
for the automated analysis of digital mammography
images [2-4]. Certain studies indicate that Al services
facilitate reliable diagnosis and can even outperform
radiologists. This has especially been demonstrated
in the detection of breast cancer signs at early stages
and/or when fibroglandular breast tissue is the predominant
site of abnormality. Other studies, however, indicate that
radiologists are still able to interpret mammograms more
accurately than Al systems[5]. Machine learning models
constitute the core functional elements of Al services that
are responsible for the detection and segmentation of areas
of interest with anomalous changes, data processing
and classification, and generating predictions or solutions
based on these data. To compare machine learning
models, diagnostic accuracy parameters such as sensitivity
(Sens) and specificity (Spec) are computed, and the area
under the curve (AUC) is analyzed [6, 7].

A true value must be chosen and contrasted
with the outcomes of the Al service in order to evaluate
the Al performance. Calculations are typically performed
relative to the model’s output and the gold standard,
which is based on the findings of additional studies [8, 9].
Moreover, Al outcomes can be evaluated by comparing them
with a physician’s opinion [10, 11]. The ability to fine-tune
Al systems is their primary benefit. However, the accuracy
testing of software that produces probabilistic data instead
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of conventional binary data is critical for the deployment
and use of Al services in medicine.

A threshold that differentiates the probabilities deemed
“abnormal” from those considered “normal” must be
established in order to interpret the probabilistic data.
The optimal probability threshold depends on the purpose
and intended application of the Al service. Since probability
distributions for imbalanced data tend to shift toward the
“normal” category [12], setting a threshold at 0.5 may not be
the optimal option. Effective cancer detection and a reduction
in false positives require a balance between a machine
learning model’s sensitivity and specificity. Using Youden's
index to maximize the sum of the Sens and Spec values
is a commonly employed technique [7]. Additionally, Chen
et al. proposed a technique for comparing the maximum
Youden’s index values for several diagnostic tests [13].
Given that the subpar performance of Al systems in medical
diagnosis can be linked to serious risks, a comprehensive
assessment of the capabilities and operational constraints
of such Al systems is required.

AIM
This study aimed to evaluate how various Al service
versions interpret digital mammography findings

in comparison to the conclusions of radiologists.

MATERIALS AND METHODS
Study design

This was a multicenter, observational, cross-sectional
study. Fig. 1 illustrates the dataset production chart
for the analysis as well as the study design.

Comparison of binary scales |, Il,
and lll employing datasets containing

Comparison of Al services by diagnostic

Comparison of the versions of Al services
1 and 2 by the diagnostic accuracy

radiologist conclusions accuracy parameters parameters
Al service 1 [ Version 1 1 Version 2 T Version 3 ]
Evaluatl.on of binary scale | — Al service 2 [ Version 1 Version 2 I Version 3 ]
in dataset 1 L
Al service 3
. Al service 1 [ Version 1 1 Version 2 T Version 3 ]
Evaluation of binary scale Il - - - -
[ in dataset 2 ] Al service 2 [ Version 1 Version 2 I Version 3 ]
Al service 3
: : ( Al service 1 ) [ Version 1 1 Version 2 T Version 3 ]
Evaluatlgn of binary scale I Al service 2 [ Version 1 Version 2 I Version 3 ]
in dataset 3
Al service 3

Fig. 1. Study design and generation of datasets for analysis. Al service, artificial intelligence service.
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Eligibility criteria

Inclusion criteria. Female patients (independent of age or
comorbidities) who received digital mammograms performed
between July 22, 2020, and December 29, 2022, with DICOM
pictures and other data available for analysis using an Al
service, were included in the study.

Exclusion criteria:

1. Insufficient data in the medical records for at least one
evaluated Al service to process;

2. Technically flawed images that impede correct
interpretation (e.g., artifacts, partially missing data);

3. Incompleteness of the metadata essential for the analysis.

Additional information. Examinations in patients
with breast implants and those who had received radiotherapy
were not categorized into separate subgroups, and their
numbers in the sample were not reported.

Study setting

The study sample included examination results
from 123 outpatient healthcare facilities of the Moscow
Healthcare Department. The study comprised 531 radiologists
who specialized in mammography. All participating radiologists
analyzed the examinations performed at the healthcare
facilities of the Moscow Healthcare Department. The results
of the Al service were compared to the true value obtained
from a radiologist’s conclusion for each examination. Each
radiologist reported an average of 1,250 examinations
during the study period.

Data generation and analysis

The accuracy of the Al service results was evaluated
using radiologist opinions from medical records as reference
values. The conclusions were presented in accordance
with categories 1-6 of the Breast Imaging Reporting and Data
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System (BI-RADS), independently for each mammary
gland. Three binary diagnostic scales were utilized based
on the probability of cancer according to BI-RADS: Scale |
classified BI-RADS categories 1-2 as “normal” and categories
3-6 as “abnormal”; Scale Il classified BI-RADS categories
1-3 as “normal” and categories 4—6 as “abnormal’;
and Scale Il classified BI-RADS categories 1-2 as “normal”
and categories 4—6 as “abnormal” (BI-RADS category 3 was
not considered in this case).

The study assessed three Al services: TrioDM-MT® (Medical
Technologies Ltd., Russia) (AUC 0.90; specificity 0.85; sensitivity
0.83; accuracy 0.84); Celsus® (Medical Screening Systems
LLC, Russia) (AUC 0.96); and Lunit INSIGHT MMG® (Lunit Inc.,
Republic of Korea) (AUC 0.96; sensitivity 0.89 when assessed
together with a radiologist) [2-4]. The Al service results
for every mammography test were displayed as probabilities,
with 0% denoting a low likelihood of cancer and 100% denoting
a high probability of cancer. The trade names of the Al services
are anonymized and randomized further in the text.

During data preprocessing, lines lacking radiologist
descriptions and/or Al service results were excluded.
Moreover, test results from male patients, female patients
aged <40 years or >100 years, and examinations in which
the radiologist’s conclusion did not correspond to BI-RADS
categories 1-6 or any Al service mentioned above were
excluded from the dataset.

After performing data preprocessing for each
mammography examination, diagnostic accuracy parameters
were determined, including AUC, sensitivity (Sens), specificity
(Spec), accuracy (Acc), positive predictive value (PPV), false
negative rate (FNR), case detection rate (CDR), abnormal
interpretation rate (AIR), Matthews correlation coefficient
(MCC), and Youden's index (J). Table 1 presents a description
of each parameter, along with diagnostic scales where
the maximum values of these parameters were observed.

Table 1. Descriptions of diagnostic accuracy parameters and diagnostic scales with the highest values of these parameters

Parameter Description Diagnostic scale
AUC Area Under the Curve: represents the ability to differentiate between classes; is not sensitive to class W and Il
imbalance
Sens Sensitivity: represents the ability to detect the “abnormal” class Il
Spec Specificity: represents the ability to detect the “normal” class Il
Acc Accuracy: represents the proportion of correctly classified objects in the total number of objects I
in the sample; sensitive to class imbalance
PPV Positive Predictive Value: represents the consistency of the detected “abnormal” class with a true |
abnormality
Abnormal Interpretation Rate: the proportion of examinations classified as “abnormal” and requiring
AR e . . . - I
additional diagnostic procedures; represents the highest number of false positives
CDR Case Detection Rate: represents the detection of abnormalities irrespective of the total number |
of false positives
FNR False Negative Rate: represents the number of “abnormal” cases not detected by an Al service I
MCC Matthews Correlation Coefficient: evaluates the quality of classification, considering all four elements |
of the error matrix; not sensitive to class imbalance
J Youden's index -

DOI: https://doiorg/1017816/DD6259%67
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Al services were updated during the study, including fine-
tuning and other modifications. Every update matched a change
in the version of the Al service. The study only addressed
the modifications made to the Al service core that influenced
the diagnostic accuracy parameters. Consequently, three iterations
of Al service 1 and Al service 2 were identified, each of which
represented a subsequent model modification and was used
during different periods. Since Al service 3 had not undergone
any major changes, different versions were not considered.

The optimal probability threshold was ascertained using
the AUC and the maximum Youden'’s index value. The calculations
were performed employing a web tool developed by the Center
for Diagnostics and Telemedicine (Moscow)'. Youden's index
was calculated using the following formula:

J =Sens —Spec —1 (M

where Sens = sensitivity; Spec = specificity.

The binary Al service results were calculated using
the threshold. The outcomes of the Al service were then
compared with the radiologist’s judgments using the following
parameters:

TP, the number of true positives;

« TN, the number of true negatives;

o FP, the number of false positives;

« FN, the number of false negatives.

The resulting TP, TN, FP, and FN values were utilized
to calculate the following Al service accuracy parameters
(Table 1) [14]:

n—1

1
AUCZEZ(XM_xi)*(yi+yi+1) @

i=1

where x = X-axis values (e.g., false positives); y = Y-axis
values (e.g., true positives); n = total number of points
on a curve; and i = current point index.

TP
Sens =——— 3)
TP+ FN
TP
Sens =—— ()
TP+ FN
TP+TN
CcC = (5)
FP+FN+TP+TN
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TP+ FP
_ TP+FP 1000 o
TP+TN+ FP+FN
TP

TP+TN+FP+FN

FNR __N )
FN+TP
MCC = TPxTN + FP+FN (10)

J(TP+FP)(TP+FN)(IN + FP)(IN + FN)

To model the ratios calculated in datasets 1-3, 100 data
samples (1,000 samples each) with a category 0 (“normal”)
to category 1 (“abnormal”) ratio of 9:1 (Scale 1), 33:1
(Scale 1), and 31:1 (Scale Ill) were created, and the accuracy
parameters and confidence intervals were calculated using
bootstrapping.

Ethical review

This srudy was part of the Experiment on the Use
of Innovative Computer Vision Technologies for Analysis
of Medical Images in the Moscow Healthcare System (Moscow
Experiment) (Protocol No. NCT04489992 of February 21, 2020)
previously approved by the local ethics committee.

Statistical analysis

The study compared the accuracy of breast cancer
detection for three binary scales based on radiologist’s
conclusions and three Al services. The nonparametric
Kolmogorov-Smirnov test was used to determine
if the resulting datasets were normally distributed.

The significance of the differences between the maximum
Youden's index values for various types and versions
of Al services was assessed in accordance with the method
outlined by Chen et al. [13]. The variance (Var) of the difference

!'S.P. Morozov, A.E. Andreychenko, S.F. Chetverikov, et al. Certificate of state registration of computer program No. 2022617324 Russian Federation.
Web tool for performing ROC analysis of diagnostic test results: No. 2022616046: declared 04/05/2022: published 04/19/2022. Access mode:

https://roc-analysis.mosmed.ai/ Date of access: 08/20/2023 EDN: ECMPNH

DOI: https://doiorg/1017816/DD6259%67
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between two independent Youden's index values was
ascertained using the following formula:

Var(J,—J,)=Var(J,)+Var(J,) an

where J =Youden's index; Var is calculated using the following
formula:

Var(J) = Spec® x Var(Sens) + Sens” x Var(Spec) (12)

where Spec = specificity; Sens = sensitivity.

Thus, the formula is as follows:
Var (J1 -J, ) = Spec. xVar (Sens1 ) + Sens; x
xVar (Spec1 ) + Specs xVar (Sens2 ) + Sens: x
xVar (Spec2 ) (13)

The statistical test and two-sided confidence interval
for the difference between two independent Youden's
index (J) values were computed based on the central limit
theorem:

Jl_Jz

Z= = 14
Op, 1/Var(Jl—Jz) ()
d+Z,,%xc, =d+Z,,x\[Var(J,=J,) (15)

where Z = standard normal random value that represents
the variation of the difference from zero, in standard
deviations; Var = variance; d = difference between two
Youden's index values; ©p, = standard deviation
of the difference between Youden's index values.

P-values < 0.05 were considered statistically significant.
The confidence interval was determined to be 95%. Calculations
were performed using the Python libraries Pandas, Matplotlib,
Seaborn, Scikit-learn, NumPy, and Statistics (stats) (Python
Software Foundation, version 3.11.0).

Vol. 5 (4) 2024

Digital Diagnostics

RESULTS

Comparison of binary diagnostic scales based
on radiologist conclusions

Based on a radiologist's evaluation of the normal
distribution of BI-RADS categories 1-6, the distribution
of these parameters was considered to be nonnormal.
The distribution histograms for the BI-RADS categories
are illustrated in Fig. 2. Peaks in the graph correspond
to the most probable categories. In this case, the greatest
peak corresponds to BI-RADS category 2 (benign), indicating
that most examinations included in the sample did not reveal
any aberrant cancer-associated changes.

Datasets 1 and 2 included 663,606 examinations, while
dataset 3 comprised 618,947 examinations. The number
of “normal” cases in datasets 1, 2, and 3 was 64,100, 19,441,
and 19,441, respectively, while the number of “abnormal”
cases was 599506, 644,165, and 599,506, respectively.
Thus, the incidence of cancer in the evaluated data sample
was 9.66% for binary scale | and 2.9% for binary scales II
and lll (Fig. 3). Comprehensive details about the datasets are
presented in Table 2 and Table 3.

To evaluate the agreement between radiologist decisions
and Al service outcomes, diagnostic accuracy measures were
calculated (Table 1 and Table &). AUC for Scale | significantly

Distribution of examinations by BI-RADS categories

400 000

300 000

200 000

Number of examinations

100 000

1 2 5 6

3 BI-RADS i
Fig. 2. Distribution of BI-RADS categories 1-6 allocated by

a radiologist when analyzing digital mammography findings for
the assessed datasets: X-axis values = BI-RADS categories 1-6;
Y-axis values = number of examinations.

Dataset 1 Dataset 2 Dataset 3
600 000
» 500 000
S
g 400 000
‘€
&
< 300000
£
£ 200 000
=
=z
100 000
0 I —
Binary scale | Binary scale Il Binary scale Il

I Radiologist Al

Fig. 3. Comparison of the distribution of categories 01 allocated by radiologists and an artificial intelligence service for three binary
scales: X-axis values = binary scales I-ll; Y-axis values = number of examinations.
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Table 2. Number of normal and abnormal cases in datasets 1-3

“Normal” “Abnormal” All examinations Amount of “normal” per “abnormal” case
Scale | 599506 64,100 663,606 9
Scale Il 644,165 19,441 663,606 33
Scale lll 599506 19,441 618,947 3

Table 3. Number of examinations in the datasets (2020-2022)

Scales

Number of
examinations

Services

Number of
examinations

Versions

Number of
examinations

90,949 212,968

1

663,606

545,362

2

3

2

108,763

2

261,445 4922 46,851

618,947
3 1 2
9481 508,929 101,654

- 1 2 3 1 2 3

56,990 - 83,828 198,231 226,870 471 43,687 53,256

Table 4. Artificial intelligence services and their versions with
the highest accuracy parameters compared to diagnostic scales

Al Al service Al service
Parameter | Scale . 1 version 2 version
service

number number

I 1 3 Tand3

AUC Il 1 3 1and 2

M 1 3 Tand2

I 1and2 2and3 2and3
Sens Il 1and2 3 2
1] 1and2 3 2
I 1 3 1
Spec I 1 Tand3 1
M 1 1 1
I 1 3 1
Acc Il 1 3 1
M 1 1 1
| 1 3 1
PPV Il 1 3 1
M 1 2and 3 1
I 3 1 2
AR Il 3 2 2
1] 3 3 2

| 1and2 2and3 2and3
CDR Il 1and3 3 2
1l 1and3 3 2
I 3 1 1

FNR Il 2 1 Tand3

M 2 1 1and 3
I 1 3 1
MCC Il 1 3 1
1l 1 3 1
. I 1 3 1
I]oduedxen s I 1 3 9
M 1 3 2

Note. Al service, artificial intelligence service.

DOI: https://doiorg/1017816/DD6259%67

differed from that for Scales Il and Il (there were no
differences in AUC between the latter). Moreover, Scale IIl had
a higher sensitivity (Sens), whereas Scale Il demonstrated
a higher specificity (Spec). Scale | displayed the highest
abnormal interpretation rate (AIR) and false negative rate
(FNR), whereas Scale Il exhibited the lowest AIR and FNR.
Scale | demonstrated the highest consistency level measured
using MCC, as well as the highest PPV and CDR (Table 5).

Comparison of Al services with each
other and with scales based on radiologist
conclusions

Fig. 4 displays the probability distributions of anomalous
changes for Al services 1-3. Scales Il and Il exhibited
the most comparable distribution of the Al service
probabilities. The distribution for the “normal” category
demonstrated a right shift, particularly for Al services 2 and 3.
The distribution for the “abnormal” category exhibited a left
shift for Al services 1, 2, and 3.

The performance of Al services 1, 2, and 3 was evaluated
and compared using the same diagnostic accuracy metrics.
Al service 1 was the most consistent with the radiologist's
conclusions in determining the “normal” and “abnormal”
categories, whereas the highest abnormal interpretation
rate (AIR) and false negative rate (FNR) were noted for Al
services 2 and 3 (Table 6).

Comparison of Al service versions with each
other

Additionally, diagnostic accuracy metrics were measured
to evaluate the different versions of Al services 1 and 2
(Table 7 and Table 8). The majority of the diagnostic accuracy
parameters varied depending on the scale; however, some
of these variations were nonsignificant. Consequently,
the optimal version of Al services cannot be identified.




ORIGINAL STUDY ARTICLES

Vol. 5 (4) 2024

Digital Diagnostics

Table 5. Diagnostic accuracy parameters evaluated for the artificial intelligence service results (Al service 1)

Binary diagnostic scale

Parameter

| I | i
Threshold 62 14 68
Auc 0.659 [0.654; 0.663] 0.726 [0.717, 0.735] * 0.738[0.730; 0.745] *
Sens 0.569 [0.560; 0.578] 0.626 [0.609; 0.644] 0.679 [0.664; 0.694] *
Spec 0.748 [0.746; 0.751] 0.826 [0.823; 0.828] * 0.796 [0.793; 0.798]
Acc 0.730[0.728; 0.733] 0.820[0.817; 0.822] * 0.792 [0.790; 0.795]
PPV 0.201 [0.198; 0.204] * 0.100 [0.098; 0.103] 0.099 [0.097; 0.101]
AR 283.280 [280.57; 285.988] * 187.810 [185.199; 190.421] 219.24 [216.787; 221.693]
CDR 56.870 [55.960; 57.780] * 18.790 [18.273; 19.307] 21.730 [21.252; 22.208]
FNR 0.431[0.422; 0.440] * 0.374 [0.356; 0.391] 0.321[0.306; 0.336]
MCC 0.211[0.205; 0.217] 0.198 [0.190; 0.205] 0.202 [0.196; 0.209]

Note. The data are presented as means [95% ClJ; *, significant differences between Scales | and II, | and Ill, and Il and |1l (Cls do not overlap).

Binary scale | Binary scale Il Binary scale Il
o 1 1
80
Z 60
= —
B —
o
& 40
20
: T 1
Normal Abnormal Normal Abnormal Normal Abnormal
Al service 1 Al service 2 Al service 3

Fig. 4. Distribution of the outcomes of three artificial intelligence services when analyzing the three datasets: X-axis values = artificial
intelligence services; Y-axis values = probability; the data are presented as follows: central line = median; edges of the “box” =first (Q1)

and third (Q3) quartiles; “whiskers” = minimum and maximum.

Table 2 presents the assessment results for the scales,
services, and versions with the highest diagnostic accuracy
parameters.

In addition to the diagnostic accuracy parameters,
the maximum Youden's index value was employed to contrast
the performance of different Al service types and versions. This
parameter assesses how well an Al service balances sensitivity
and specificity. When assessed using the highest Youden’s
index value, Al service 1 performed best (see Table 2). When
comparing the versions of Al service 1, version 3 exhibited
the best diagnostic accuracy parameters. However, in terms
of Youden'’s index, version 1 of Al service 1 had the best results
for Scale I, whereas version 2 performed best for Scales II
and lll. Significant differences were observed for all results.

DISCUSSION

The study examined the binary diagnostic scales for digital
mammography, three Al services, and three versions
of Al services 1 and 2. The standard diagnostic accuracy
parameters and Youden'’s index were ascertained.

DOI: https://doiorg/1017816/DD6259%67

The ratio of detected cancer cases to the total number
of examinations performed was 0.10, 0.03, and 0.03 for Scales |,
I, and Ill, respectively. Because the risk of undiagnosed
abnormalities must be taken into account, variations
in diagnostic scales are essential for screening. For example,
BI-RADS category 3 necessitates an additional examination;
based on it, certain individuals may be placed in categories
with a higher level of malignancy. Thus, employing Scale I,
which classifies BI-RADS category 3 as class 1 (“abnormal”),
lowers the probability of undetected abnormalities.

Notably, when using Scale |, the incidence of abnormalities
was neither influenced by the presence of BI-RADS
category 3 in the “abnormal” group nor its complete absence
from the dataset. However, including this category in the
“normal” group significantly elevated the estimated cancer
incidence in the screened population. Moreover, in BI-RADS
category 3, Scale | exhibits a similar pattern for AUC,
with Scales Il and IIl exhibiting no significant variations.

When comparing the three Al services on the basis
of diagnostic accuracy parameters, it was discovered that
AUC, specificity, sensitivity, accuracy, PPV, CDR, and MCC
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Table 6. Diagnostic accuracy parameters evaluated for the results of three artificial intelligence services compared to radiologist

conclusions

Parameter Binary scale Al service 1 Al service 2 Al service 3

I 64 32 10
Threshold Il 75 bh 20

Il 74 b 20

I 0.671 [0.666; 0.676] * 0.647 [0.641; 0.652] 0.597 [0.592; 0.602]
AuC I 0.750 [0.740; 0.7591 * 0.698 [0.689; 0.708] 0.713 [0.704; 0.722]

Il 0.755[0.746; 0.763] * 0.708 [0.699; 0.717] 0.720 [0.713; 0.728]

I 0.610[0.600; 0.620] * 0.602 [0.591; 0.613] * 0.578 [0.569; 0.587]
Sens I 0.687 [0.669; 0.706] 0.609 [0.591; 0.627] 0.676 [0.658; 0.693]

Il 0.689 [0.672; 0.705] * 0.616 [0.598; 0.633] 0.679 [0.664; 0.693] *

I 0.73110.728; 0.734] * 0.691[0.688; 0.694] 0.616 [0.613; 0.619]
Spec I 0.812 [0.810; 0.815] * 0.788 [0.785; 0.790] 0.749 [0.746; 0.752]

Il 0.821[0.819; 0.824] * 0.800 [0.798; 0.803] 0.762 [0.759; 0.765]

I 0.719 [0.717; 0.722] * 0.682 [0.679; 0.685] 0.612 [0.609; 0.615]
Acc I 0.809 [0.806; 0.811] * 0.782[0.779; 0.785] 0.747 [0.744; 0.750]

Il 0.817 [0.815; 0.819] * 0.794[0.792; 0.7971 0.760 [0.757; 0.762]

I 0.202 [0.199; 0.205] * 0.178[0.175; 0.181] 0.143[0.141; 0.145]
PPV I 0.102 [0.099; 0.105] * 0.082 [0.079; 0.084] 0.077 [0.075; 0.079]

Il 0.113 [0.110; 0.116] * 0.093 [0.090; 0.095] 0.086 [0.084; 0.088]

I 302.800 [299.851; 305.749] 338.140 [335.251; 341.029] 403.640 [400.720; 406.560] *
AIR I 202.600 [200.315; 204.885] 224.330 [221.624; 227.036] 263.320 [260.371; 266.269] *

Il 195.130 [192.823; 197.437] 212.940 [210.594; 215.286] 251.890 [249.124; 254.656] *

[ 61.040 [60.041; 62.039] * 60.210 [59.113; 61.307] 57780 [56.889; 58.671]
CDR I 20.620[20.062; 21.178] * 18.280 [17.735; 18.825] 20.270 [19.750; 20.790] *

Il 22.040 [21.507; 22.573] * 19.700 [19.131; 20.269] 21.720 [21.260; 22.180] *

I 0.390 [0.380; 0.400] 0.398 [0.387; 0.409] 0.422[0.413; 0.431] *
FNR I 0.313 [0.294; 0.331] 0.391[0.373; 0.409] * 0.32410.307; 0.342]

Il 0.311 [0.295; 0.328] 0.384 [0.367; 0.402] * 0.321[0.307; 0.336]

I 0.223 [0.217; 0.230] * 0.186 [0.179; 0.193] 0.118 [0.113; 0.124]
MCC I 0.212 [0.204; 0.220] * 0.163 [0.155; 0.170] 0.165[0.158; 0.172]

Il 0.227 [0.219; 0.234] *

0.179 [0.171; 0.187] 0.179 [0.173; 0.185]

Note. Al service, artificial intelligence service; the data are presented as means [95% Cl]; *, significant differences between services 1and 2, 1 and 3,

and 2 and 3 (Cls do not overlap).

were greater for Al service 1 than for all diagnostic
scales. Al service 3 demonstrated the highest AIR,
whereas Al services 2 and 3 exhibited the highest FNR,
depending on the binary scale. In general, these results
indicate the superior performance of Al service 1. When
comparing the maximum Youden’s index values, Al service
1 demonstrated superior accuracy to all the diagnostic
scales. However, while the assessment using Youden’s
index revealed significant differences between all scales
and services, the assessment using bootstrap confidence
intervals exhibited no significant differences in CDR
and sensitivity between certain services.

DOI: https://doiorg/1017816/DD6259%67

Similar to binary scales, when selecting Al services
and their versions, it is crucial to consider their intended use.
For example, when the early detection of radiological signs
of cancer is required, sensitivity (Sens) will be the primary
diagnostic accuracy parameter because an Al service
needs to identify as many true positive (abnormal) cases
as feasible. Another crucial parameter is the FNR, which
should be minimized to lower the possibility of undetected
abnormalities. This study indicates that Al services 1
and 2 are the most sensitive. However, Al service 2 displayed
the highest FNR for Scales Il and Ill. Versions 3 and 2 of Al
services 1 and 2, respectively, performed best in this study.
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Both PPV, which verifies that the majority of positive
findings are actual abnormalities, and specificity are essential
for minimizing false positives and achieving the maximum
possible interpretation accuracy. Al service 1 was the most
effective in these cases. Differences in the specificity and PPV
were found between various Al service 1 versions for different
scales.

A decrease in AIR cuts down the time spent by radiologists
on additional data interpretation, as long as the Al service
classification is unambiguous and reliable. In this study, Al
service 1 exhibited the lowest AIR for all scales.

Two parameters must be considered to examine
the accuracy of “normal” and “abnormal” case classification
for Al services and their versions. These include
the accuracy (Acc) parameter, where a high value denotes
the degree to which both groups can be classified
correctly, and the Matthews correlation coefficient,
which examines the overall performance of a classifier,
considering all components of the error matrix. The study
found that version 3 of Al service 1 achieved the highest
overall categorization accuracy. Notably, the Al service
results were compared with radiologists’ conclusions
allocated to a specific class, resulting in certain limitations
because it is vital to understand the diagnostic accuracy
parameters used by a radiologist. A reference dataset,
where the correct value is established based on histology
findings, can be used to evaluate the diagnostic accuracy
of radiologists’ conclusions. Such a study has already
been conducted and verified the high diagnostic accuracy
of radiologist conclusions (AUC 0.928) [15]. Lower AUC values
for the evaluated Al services were found in our study, indicating
the necessity of updating, which was subsequently completed
between 2020 and 2022. Furthermore, it is important
to consider the sensitivity and specificity, which are inferior
to those of radiologist conclusions [15]. The optimization
of a particular parameter’s settings was not covered in this
study. Importantly, the sensitivity settings in the Al services
can vary for the same AUC value. For example, a sensitivity
of approximately 100% removes the risk of undetected
abnormalities but raises the number of false positives.
We intend to perform a thorough examination of the Al
service fine-tuning in the future to enhance the sensitivity
and specificity.

The primary usage of Al services in mammography
is for the initial reading, which will augment the accuracy
of breast cancer diagnosis [16] by improving the sensitivity.
Alternatively, Al services can be used for image sorting when
the sensitivity is close to 100%. In this scenario, radiologists
will submit the examinations as electronic medical records
right away and won't need to explain the ones that
an Al service has deemed "normal." A recent study exhibited
promising results for this approach in the autonomous sorting
of fluorography findings [17]. Numerous benign changes that
may potentially necessitate attention and additional testing
may make this scenario less effective in mammaography.
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Study limitations

This paper covers the data collected during the first three
years of the large-scale Experiment on the Use of Innovative
Computer Vision Technologies for Analysis of Medical Images
in the Moscow Healthcare System [18]. It does not address
the optimal settings of Al services. One limitation of this study
is that AUC may be inadequate for evaluating the performance
of Al services in a clinical setting because specific thresholds
are not always applicable in real-world practice. Moreover,
the sensitivity (Sens) and specificity (Spec) do not account
for the population-wide prevalence of the disease. Thus,
in future research, we plan to employ various techniques
of assessing Al service efficacy in a clinical setting, as well
as to use histological verification findings as true values.
Furthermore, this study only included mammography
examinations with Al service results; mammograms where
an Al service failed to produce results were not evaluated.
Moreover, this study did not ascertain Al service performance
in patients with a foreign body in the breast (breast implants)
or those with radiotherapy-induced changes. However, such
cases are highly relevant to practice, and additional research
is warranted.

CONCLUSION

This study discovered that the method for developing
a “normal/abnormal” binary scale affects the diagnostic
accuracy parameters of various types and versions
of Al services. Significant discrepancies between the accuracy
parameters of Al services and diagnostic scales were identified
by Youden's index, and the clinical setting determines
which parameters should be utilized in the comparative
evaluation of Al services. Using Youden's index maximization
to set up an Al service provides a balance of sensitivity
and specificity that is not necessarily clinically significant.
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