

Диагностическая точность искусственного интеллекта для скрининга рака предстательной железы при бипараметрической магнитнорезонансной томографии: систематический обзор

О.В. Крючкова¹, Е.В. Щепкина^{2, 3, 4}, Н.А. Рубцова⁵, Б.Я. Алексеев⁵, А.И. Кузнецов⁶, С.В. Епифанова^{1, 3}, Е.В. Заря¹, А.Э. Талышинский⁷

¹ Центральная клиническая больница с поликлиникой Управления делами Президента Российской Федерации, Москва, Россия;

² Российская академия народного хозяйства и государственной службы при Президенте Российской Федерации, Москва, Россия;

³ Научно-практический клинический центр диагностики и телемедицинских технологий, Москва, Россия;

⁴ Редакция журнала «Педиатрия» имени Г.Н. Сперанского, Москва, Россия;

⁵ Московский научно-исследовательский онкологический институт имени П.А. Герцена — филиал ФГБУ Национального медицинского

исследовательского центра Радиологии, Москва, Россия;

⁶ Московский авиационный институт, Москва, Россия;

⁷ Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

АННОТАЦИЯ

Обоснование. По последним опубликованным данным, в 2021 г. в России зарегистрировано 40 137 новых случаев рака предстательной железы, что ставит его на второе место среди онкологических заболеваний в мужской популяции после рака лёгкого. Таким образом, рак предстательной железы является одним из наиболее распространённых злокачественных новообразований у мужчин. В этих условиях точное и своевременное выявление рака предстательной железы приобретает особую важность.

Цель настоящего систематического обзора с метаанализом — оценка качества прогностических моделей, построенных для выявления рака предстательной железы при первичном обращении.

Материалы и методы. Систематический поиск публикаций проводили в специализированных поисковых системах научной информации eLibrary.ru, PubMed, Google Scholar, Web of Science и ResearchGate с использованием установленных методов в соответствии с протоколом PRISMA. Для анализа отбирали статьи, опубликованные в период с января 2019 г. по сентябрь 2023 г. Два автора независимо отбирали публикации в соответствии с критериями включения и исключения.

Результаты. Этот систематический обзор с метаанализом включает 21 исследование. В общей сложности в них участвовало 3630 пациентов, из них 47% пациентов с раком предстательной железы и 53% с доброкачественными образованиями предстательной железы. Возраст пациентов в среднем составил 67,1 года (в диапазоне от 36 до 90 лет). Из всех исследований, в 81% случаев использовался протокол Т2-взвешенных изображений, в 57% — диффузионно-взвешенных изображений, и в 76% измеряемых коэффициентов диффузии. Кроме того, 43% исследований изучали образования в переходной зоне, 33% — в периферической зоне предстательной железы. В 52% случаев авторы проводили исследование в целом по органу, без разделения на зоны. Анализ показал, что наиболее часто исследователи используют следующие алгоритмы машинного обучения: MLR (Multiple Logistic Regression) — 76%, SVM (Support Vector Machine) — 38%, и RF (Random Forest) — 24%. По данным проведённого метаанализа оценки ROC-AUC в 73 прогностических моделях, описанных в изученных нами публикациях, с использованием метода случайных эффектов, было получено итоговое значение ROC-AUC 0,793 (95% Cl; 0,768–0,818), P=86,71%, p <0,001. Модели, построенные на последовательностях T2-взвешенных изображений + измеряемых коэффициентов диффузии (ROC-AUC 0,860 95%CI 0,813-0,907), а также модели, построенные по принципу «белый ящик» (ROC-AUC 0.834 95%Cl 0.806-0.861), оказались наиболее точными, по сравнению с построенными по принципу «чёрный ящик» (ROC-AUC 0,733 95%Cl 0,695-0,771). Модели, использующие радиомические и клинические признаки, были несколько точнее, чем построенные исключительно на радиомических признаках: ROC-AUC 0,869 (95%CI 0,844-0,895) против 0,779 (95%CI 0,751-0,807). Точность моделей практически не различалась по зоне исследования (переходная или периферическая).

Заключение. Результаты многообещающие, но клиническая применимость по-прежнему требует более тщательной проверки со стороны экспертов в медицинских учреждениях и оценки эффективности в проспективных исследованиях.

Ключевые слова: машинное обучение; магнитно-резонансная томография; предстательная железа; новообразования предстательной железы; диагностические методы и процедуры.

Как цитировать:

Крючкова О.В., Щепкина Е.В., Рубцова Н.А., Алексеев Б.Я., Кузнецов А.И., Епифанова С.В., Заря Е.В., Талышинский А.Э. Диагностическая точность искусственного интеллекта для скрининга рака предстательной железы при бипараметрической магнитно-резонансной томографии // Digital Diagnostics. 2024. Т. 5, № 3. С. 534–550. DOI: https://doi.org/10.17816/DD626643

Рукопись получена: 08.02.2024

Рукопись одобрена: 18.04.2024

Опубликована online: 09.09.2024

DOI: https://doi.org/10.17816/DD626643

Diagnostic accuracy of artificial intelligence for the screening of prostate cancer in biparametric magnetic resonance imaging: a systematic review

Oksana V. Kryuchkova¹, Elena V. Schepkina^{2, 3, 4}, Natalia A. Rubtsova⁵, Boris Ya. Alekseev⁵, Anton I. Kuznetsov⁶, Svetlana V. Epifanova^{1, 3}, Elena V. Zarya¹, Ali E. Talyshinskii⁷

¹ Central Clinical Hospital, Office of the President of the Russian Federation, Moscow, Russia;

² Russian Presidential Academy of National Economy and Public Administration, Moscow, Russia;

³ Research and Practical Clinical Center for Diagnostics and Telemedical Technologies, Moscow, Russia;

⁴ Editorial of the Journal "Pediatria" named after G.N. Speransky, Moscow, Russia;

⁵ P.A. Herzen Moscow Oncology Research Institute, Branch National Medical Research Radiological Center, Moscow, Russia;

⁶ Moscow Aviation Institute, Moscow, Russia;

⁷ Saint Petersburg State University, Saint Petersburg, Russia

ABSTRACT

BACKGROUND: Based on the latest published data, 40,137 new cases of prostate cancer were reported in Russia in 2021, ranking second after lung cancer in men.

Thus, prostate cancer is one of the most common malignant neoplasms in men. Accurate and timely detection of prostate cancer is important under the current conditions.

AIM: This systematic review aimed to assess the quality of prediction models designed to detect prostate cancer during initial presentation.

MATERIALS AND METHODS: A systematic search was performed in eLibrary.ru, PubMed, Google Scholar, Web of Science, and ResearchGate for relevant publications indexed from January 2019 to September 2023 in accordance with the PRISMA protocol. Two authors independently assessed the relevant studies for potential inclusion or exclusion.

RESULTS: This systematic review meta-analysis included 21 studies. In total, data from 3,630 patients were analyzed, of which 47% had prostate cancer and 53% had benign prostate neoplasms. The mean age of the patients was 67.1 (36–90) years. In addition, 81% of the studies were based on T2-weighted imaging, 57% on diffusion-weighted imaging, and 76% on apparent diffusion coefficient. Moreover, 43% and 33% of the studies were dedicated to transition zone and prostate peripheral zone neoplasms, respectively, and 52% of the authors examined the whole prostate gland, without dividing it into zones. The most common machine-learning algorithms applied by the investigators were as follows: multiple logistic regression (76%), support vector machine (38%), and random forest (24%). Based on the meta-analysis performed for the receiver operating characteristic-area under the curve (ROC–AUC) assessment with random-effect approach in 73 prediction models described in the publications, the final ROC–AUC was 0.793 [95% CI 0.768–0.818], $l^2 = 86.71\%$, p < 0.001. The most accurate prediction models were based on the T2-weighted imaging + apparent diffusion coefficients imaging protocol: 0.860 [95% CI 0.813–0.907], and models created according to the "white box" principle (0.834 [95% CI 0.806–0.861]) were more accurate than the "black box" ones (0.733 [95% CI 0.695–0.771]). The models using radiomics and clinical features were slightly more accurate than thes using the radiomics parameters alone (0.869 [95% CI 0.844–0.895] vs. 0.779 [95% CI 0.751–0.807]). Model accuracy was nearly identical across transitional and/or peripheral zone studies.

CONCLUSIONS: Artificial intelligence demonstrated promising results. However, the clinical applicability may require more intensive expert inspection in healthcare institutions and evaluation of efficacy in prospective studies.

Keywords: machine learning; magnetic resonance imaging; prostate gland; prostate neoplasms; diagnostic techniques and procedures.

To cite this article:

Kryuchkova OV, Schepkina EV, Rubtsova NA, Alekseev BYa, Kuznetsov AI, Epifanova SV, Zarya EV, Talyshinskii AE. Diagnostic accuracy of artificial intelligence for the screening of prostate cancer in biparametric magnetic resonance imaging: a systematic review. *Digital Diagnostics*. 2024;5(3):534–550. DOI: https://doi.org/10.17816/DD626643

Submitted: 08.02.2024

Accepted: 18.04.2024

Published online: 09.09.2024

DOI: https://doi.org/10.17816/DD626643

人工智能双参数磁共振成像筛查前列腺癌的诊断准确 性:系统综述

Oksana V. Kryuchkova¹, Elena V. Schepkina^{2, 3, 4}, Natalia A. Rubtsova⁵, Boris Ya. Alekseev⁵, Anton I. Kuznetsov⁶, Svetlana V. Epifanova^{1, 3}, Elena V. Zarya¹, Ali E. Talyshinskii⁷

¹ Central Clinical Hospital, Office of the President of the Russian Federation, Moscow, Russia;

² Russian Presidential Academy of National Economy and Public Administration, Moscow, Russia;

³ Research and Practical Clinical Center for Diagnostics and Telemedical Technologies, Moscow, Russia;

⁴ Editorial of the Journal "Pediatria" named after G.N. Speransky, Moscow, Russia;

⁵ P.A. Herzen Moscow Oncology Research Institute, Branch National Medical Research Radiological Center, Moscow, Russia;

⁶ Moscow Aviation Institute, Moscow, Russia;

⁷ Saint Petersburg State University, Saint Petersburg, Russia

摘要

论证。根据2021年俄罗斯最新公布的数据,将新增40137例前列腺癌病例,在男性人群中仅次于肺癌[2]。

因此,前列腺癌是男性最常见的恶性肿瘤之一。 在这种情况下,准确及时地发现前列腺癌就显得尤为重要。

本系统综述的目的 一 评估在初次就医时确诊前列腺癌构建的预测模型质量。

材料和方法。根据PRISMA协议,于2019年1月至2023年9月期间采用既定方法对 eLibrary、PubMed、Google Scholar、Web of Science和Research Gate电子数据库中的文献进行 了系统检索。 两位作者独立评估了研究对象的纳入与排除。

结果。这项荟萃分析包括21项研究。 共有3630名患者参与,其中 47%患有前列腺癌,53%为良性前列腺增生患者。 患者的平均年龄为67.1岁(年龄范围在36至90岁之间)。81%的研究是基于加权T2成像(T2-WI),57%基于扩散加权成像 (DWI),76%基于表观扩散系数(ADC)。43%的研究为前列腺过渡区(TZ)的增生,33%为前列腺外周区(PZ)。 52%的作者对整个器官进行了研究,而没有划分区域。分析表明,研究人员最常使用以下机器学习 (ML) 算法:MLR(Multiple Logistic Regression)(76%),SVM (Support Vector Machine)(38%) 和 RF(Random Forest) (24%).根据我们研究的文献中描述的73个预测模型的ROC-AUC评估的荟萃分析数据,使用随机效应法,最终ROC-AUC值为0.793[95%CI 0.768; 0.818],I²=86.71%,p<0.001。基于T2-WI+ADC序列的模型:(0.860 [95%CI 0.813; 0.907]);以及与《黑盒》原则模型(0.733 [95%CI 0.695; 0.771])相比,最准确的是《白盒》原则模型(0.834 [95%CI0.806;0.861])。用在放射学和临床特征的模型比仅基于放射学特征的模型准确性略高(0.869 [95%CI 0.844; 0.895]vs 0.779 [95%CI 0.751; 0.807])。研究区域(PZ 和/或 TZ)模

型的准确性实际上没有区别。

结论。研究结果前景广阔,但临床应用性仍需要医疗机构的专家进行更严格的验证,并在前 瞻性研究中进行疗效评估。

关键词:机器学习;核磁共振成像;前列腺;前列腺肿瘤;诊断方法和步骤。

引用本文:

Kryuchkova OV, Schepkina EV, Rubtsova NA, Alekseev BYa, Kuznetsov AI, Epifanova SV, Zarya EV, Talyshinskii AE. 人工智能双参数磁共振成像筛 查前列腺癌的诊断准确性:系统综述. *Digital Diagnostics*. 2024;5(3):534–550. DOI: https://doi.org/10.17816/DD626643

收到: 08.02.2024

接受: 18.04.2024

发布日期: 09.09.2024

ОБОСНОВАНИЕ

В настоящее время, по данным литературы на 2020 г., распространённость рака предстательной железы (РПЖ) в мире составляет 1 414 259 новых случаев в год и 15,1% от всех выявленных злокачественных новообразований среди мужчин [1]. По последним опубликованным данным в 2021 г. в России зарегистрировано 40 137 новых случаев РПЖ, и в мужской популяции он занимает второе место после рака лёгкого [2].

Таким образом, РПЖ является одним из наиболее распространённых злокачественных новообразований у мужчин. В этих условиях точное и своевременное выявление РПЖ приобретает особую важность. Решающее значение имеет разделение пациентов с разным прогнозом для определения стратегии лечения и подбора вариантов активного наблюдения.

В данный момент, согласно актуальным клиническим рекомендациям, современные подходы к первичной диагностике РПЖ строятся на комбинации нескольких методов исследования: физикального осмотра (пальцевое ректальное исследование — ПРИ), а также лабораторноинструментальных исследований, таких как уровень простатспецифического антигена (ПСА, PSA) и плотность ПСА (PSAD) в сыворотке крови, трансректальное ультразвуковое исследование (УЗИ), компьютерная томография (КТ) и мультипараметрическая магнито-резонансная томография (мпМРТ), а также сведения о семейном анамнезе.

Тем не менее, несмотря на такой подход к диагностике РПЖ, выявление данной патологии остаётся сложной задачей. Это обусловлено низкой чувствительностью и специфичностью некоторых методов. Например, у 70–80% пациентов с повышенной концентрацией ПСА (>4 нг/мл) нет РПЖ [3]. УЗИ является базовым диагностическим методом, но играет ограниченную роль в выявлении РПЖ, поскольку очаговые поражения видны лишь у небольшой части пациентов (11–35%). Среди них лишь часть (17–57%) впоследствии оказывается опухолью.

Внедрение стандартизированной шкалы PI-RADS позволило вывести мпМРТ предстательной железы из дополнительных методов стадирования в инструмент первичной диагностики и активного наблюдения. Недавнее исследование выявило, что мпМРТ с применением PI-RADS v2.1 имеет хорошую чувствительность, специфичность и ROC-AUC 85,2%/72,4%/0,84, 62,9%/85,5%/0,83 и 92,4%/53,6%/0,82 при корректировке категорий PI-RADS для порога PSAD 0,10, 0,15 и 0,20 нг/(мл×мл) для обнаружения клинически значимого РПЖ [4]. Именно поэтому в настоящее время мпМРТ занимает лидирующее место и является методом выбора в диагностике РПЖ. Однако, несмотря на эти достижения, метод по-прежнему имеет ряд недостатков: высокую стоимость, нестабильное качество изображений, умеренную специфичность и воспроизводимость [5, 6]. Для устранения ограничений данного метода вместо мпМРТ стали применять бипараметрическую МРТ (бпМРТ), которая содержит такие же последовательности (как Т2-взвешенные и диффузионно-взвешенные изображения, а также измеряемые коэффициенты диффузии: Т2-ВИ, ДВИ и ИКД соответственно), но исключает протокол динамического контрастного усиления (ДКУ, DCE — Dynamic Contrast Enhanced), который требует проведения инвазивного дорогостоящего вмешательства.

Для исключения вариабельности интерпретации результатов между исследователями стали использовать радиомику и искусственный интеллект, в частности алгоритмы машинного обучения (МО) [7]. В последние годы было опубликовано несколько систематических обзоров, где объектом изучения стали радиомика и МО на основе мпМРТ и бпМРТ [8–11].

Однако все эти исследования имели другие задачи, такие как оценка выявления только клинически значимого рака или разные комбинации оценки радиомики на основе не только бпМРТ, но и мпМРТ. Ранее собранная в систематических обзорах информация не содержит метаанализа для получения обобщённых данных по проведённым исследованиям. Таким образом, всё вышеперечисленное делает актуальным поиск возможностей увеличения точности бпМРТ для диагностики РПЖ и обобщения проведённых исследований на основе метаанализа.

Цель исследования — оценка качества прогностических моделей, построенных для выявления РПЖ при первичном обращении.

МАТЕРИАЛЫ И МЕТОДЫ

Протокол и регистрация

Протокол систематического обзора не был зарегистрирован ни в одной базе данных до начала данного исследования.

Поиск публикаций и отбор исследований

Алгоритм поиска произведён в соответствии с протоколом для систематических обзоров и метаанализов (PRISMA). Поиск литературы был выполнен в пяти специализированных поисковых системах научной информации: eLibrary.ru, PubMed, Google Scholar, Web of Science и ResearchGate. Для анализа отбирали статьи, опубликованные в период с января 2019 г. по сентябрь 2023 г. Последний поиск осуществлялся 24 сентября 2023 г.

Поисковый запрос состоял из трёх основных частей. Первая часть была посвящена РПЖ и включала два ключевых слова: «простата» и «рак простаты». Вторая часть была посвящена использованию МРТ с помощью двух ключевых слов: «МРТ» и «магнитный», а третья часть была посвящена радиомике и искусственному интеллекту и включала 5 ключевых фраз: «радиомика», «машинное обучение», «глубокое обучение», «искусственный интеллект» и «модель». Стратегия поиска: #1 AND #2 AND #3. Подробная информация доступна в табл. 1.

Русский язык	Английский язык
«простата» ИЛИ «рак простаты»	«prostate» OR «prostate cancer»
«МРТ» ИЛИ «магнитный»	«MRI» OR «magnetic»
«радиомика» ИЛИ «машинное обучение» ИЛИ «глубокое обучение» ИЛИ «искусственный интеллект» ИЛИ «модель»	«radiomic» OR «machine learning» OR «deep learning» OR «artificial Intelligence» OR «model»

Таблица 1. Ключевые слова для поиска в электронных базах данных: eLibrary, PubMed, Google Scholar, Web of Science и Research Gate

Критерии включения/исключения

Согласно поставленной цели поиска, в исследование были включены оригинальные статьи и полный текст на русском или английском языках. Монографии, обзоры, метаанализы, описания отдельных случаев, мнения экспертов, исследования, результаты которых опубликованы только в форме тезисов, а также исследования на животных или исследования эффективности диагностики были исключены из анализа. Кроме того, из раздела скрининга были исключены статьи, в которых недостаточно внимания уделялось реализации алгоритмов МО, исследованию РПЖ и результатам моделирования. Следует подчеркнуть, что количество включённых в исследования пациентов не являлось для нас определяющим фактором отбора.

Критерии включения: оригинальная статья; наличие полного текста статьи; статья на русском или английском языке.

Критерии исключения: монография; обзор, систематический обзор или метаанализ; тезисы конференции; описание отдельных случаев; исследования на животных; исследования эффективности диагностики.

Извлечение и синтез данных исследований

При первичном отборе с использованием вышеописанных поисковых запросов было получено 836 публикаций. Извлечённые данные были собраны в базу данных (Microsoft Excel 365). Названия и аннотации потенциально подходящих исследований проверялись двумя исследователями на предмет соответствия критериям поиска, а разногласия обсуждались с третьим рецензентом для достижения консенсуса.

Затем исследователями были проанализированы полные тексты статей. Для каждого исследования регистрировались следующие данные: первый автор, год публикации, количество случаев, возраст, тип проведённого анализа, количество положительных и отрицательных случаев. Была собрана информация, касающаяся радиомики и метода МО, включённых последовательностей в MPT-исследование, деталей сегментации поражений, этапов предварительной обработки данных, количества извлечённых признаков, процесса отбора признаков, модели прогнозирования и стратегии проверки. Минимальный размер выборки пациентов в исследованиях для включения в систематический обзор не был выбран. Исследование включалось, если были соблюдены все следующие критерии.

1. Был представлен анализ, направленный на выявление РПЖ в противовес доброкачественным образованиям, таким как доброкачественная гиперплазия предстательной железы (ДГПЖ), определяемая как балл Глисона (GS) менее 6, поставленным на основе биопсии или по результатам гистологии после радикальной простатэктомии.

2. Была предоставлена информация о включённых последовательностях в МРТ-исследование; последовательность ДКУ не была включена в итоговую модель.

3. Были представлены использованные алгоритмы MO для выявления РПЖ.

4. Была предоставлена информация о площади под кривой ROC (ROC-AUC) и общем количестве пациентов, количестве положительных и отрицательных результатов, определяемых как PCa (РПЖ — злокачественное образование) и доброкачественные процессы (non-PCa).

Если образование анализировалось отдельно на основе местоположения переходной (TZ — transition zone) или периферической зоны (PZ — peripheral zone), то в метаанализ были включены результаты обеих моделей. Исследования, в которых не использовались MO или содержалось недостаточно данных, не были включены в метаанализ.

Статистический анализ

Точность прогнозирования (предсказание наличия РПЖ) была количественно оценена с использованием ROC-AUC [12]. Для каждого из включённых исследований ROC-AUC была получена с соответствующими 95% доверительными интервалами (ДИ). Стандартную ошибку (SE — standard error) для ROC-AUC рассчитывали на основе формул, представленных в Cochrane Handbook for Systematic Reviews (handbook-5-1.cochrane.org) [13]. Результаты метаанализа представлены в виде блобограммы (forest plot).

Значение *I*², полученное на основании метода Хиггинса–Томпсона (Higgins–Thompson), использовалось для оценки статистической гетерогенности, которая обеспечивала оценку процента вариабельности включённых в метаанализ исследований. Значения *I*² 0–25%, 26–50%, 51–75% и >75% представляют собой очень низкую, низкую, среднюю и высокую гетерогенность соответственно. Статистика *I*² описывает процент вариаций между исследованиями, обусловленных скорее гетерогенностью, чем случайностью [14]. Анализ подгрупп проводился при наличии высокой гетерогенности.

Вес каждого исследования рассчитывался с помощью метода обратной дисперсии, в котором вес, присвоенный каждому исследованию, выбирается равным обратному значению дисперсии оценки эффекта, что минимизирует неопределённость оценки объединенного эффекта [13]. Было выполнено объединение исследований и оценена величина эффекта с использованием модели случайных эффектов, которая позволяет оценить распределение истинных эффектов между исследованиями с учётом гетерогенности [15].

Различия считались статистически значимыми при p < 0,05. Метаанализ данных проводился с использованием свободного программного обеспечения OpenMeta[Analyst] (Brown University, Providence, Rhode Island, США).

РЕЗУЛЬТАТЫ

Поиск литературы и извлечение данных

Первоначальный поиск выявил 2468 потенциально подходящих исследований. После удаления 1632 дубликатов исследователями были проанализированы 836 публикаций. После оценки названия и аннотаций 769 статей были исключены, поскольку они не соответствовали целям поиска. Таким образом, 67 полнотекстовых статей были оценены каждым исследователем на предмет приемлемости. После доработки было ещё исключено 46 статей, осталась 21 статья [16–36]. Полный алгоритм поиска литературы представлен на рис. 1.

Исходные характеристики включённых исследований показаны в табл. 2 и 3.

В итоге в систематический обзор и метаанализ было включено 21 исследование. Количество пациентов в 21 включённом исследовании варьировало от 32 до 463. Таким образом, всего в исследовании участвовало 3 630 пациентов, из них 47% пациентов с РПЖ и 53% с доброкачественными образованиями предстательной железы. Возраст пациентов в среднем составил 67,1 года (в диапазоне от 36 до 90 лет). В 81% случаев исследования были проведены по протоколу T2-BИ, в 57% — ДВИ и в 76% — ИКД. Из всех исследований, 43% изучают образования в TZ, 33% — в РZ простаты. В 52% работ исследователи не указали, какую зону простаты они изучали.

Рис. 1. Блок-схема процесса обзора публикаций и отбора исследований. РПЖ — рак предстательной железы; МО — машинное обучение; MPT — магнитно-резонансная томография; DCE (Dynamic Contrast Enhanced) — динамическое контрастное усиление; ROC-AUC — площадь под ROC-кривой.

Автор	Год	Название журнала	N	РПЖ (n)	не-РПЖ (n)	Возраст	Протоколы МРТ	Зона ПЖ
He [32]	2021	Cancer Imaging	459	273	186		T2WI, ADC	
Chen [31]	2019	Journal of Magnetic Resonance Imaging	381	182	199	(55–90)	t2WI, DWI, ADC	—
Jamshidi [33]	2022	MAGMA	32	11	21	—	T2WI	—
Han [30]	2022	Medical Science Monitor	84	32	52	70 [65–76]	t2WI, DWI, ADC	—
Ayyad [29]	2022	Sensors	80	37	43	65,7	t2WI, DWI, ADC	_
Li [28]	2023	Physics in Medicine and Biology	76	38	38	60 (36–76)	t2WI, DWI, ADC	—
Jin [27]	2023	BMC Med Imaging	463	152	311	62,6±8,2	t2WI, DWI, ADC	TZ, PZ
Aussavavirojekul [34]	2022	Prostate	101	31	70	70±5,79	t2WI, DWI, ADC	—
Giambelluca [35]	2020	Current Problems in Diagnostic Radiology	46	19	27	65±7 (49–80)	T1WI, T2WI, DWI, ADC	TZ, PZ
Viswanath [36]	2019	BMC Med Imaging	85				t2WI, DWI, ADC	PZ
Ji [26]	2021	Physical and Engineering Sciences in Medicine	459	273	186	_	t2WI, ADC	—
Hu [25]	2021	European Radiology	136	73	63	72 (49–89)	t2WI, DWI, ADC	TZ, PZ
McGarry [24]	2019	Tomography	48	16	32	60 (45–71)	T2WI, DWI, ADC	—
Ou [23]	2020	Anticancer Research	153	67	86	66,84±0,54	T2WI	—
Zhong [22]	2023	Scientific Reports	171	66	105	68	T2WI, DWI, ADC	TZ, PZ
Wu [21]	2019	Journal of Magnetic Resonance Imaging	105	44	61	68±7	T2WI, ADC	ΤZ
Zhou [20]	2022	Journal of Computer Assisted Tomography	75		_	_	DWI, ADC	TZ
Lu [19]	2022	Frontiers in Oncology	136	49	87	67,3±8,4 (38–86)	T2WI, ADC	ΤZ
Gui [18]	2022	Frontiers in Oncology	146	66	80	71±7,2	T2WI, DWI	_
Li [17]	2021	Frontiers in Oncology	203	112	91	66±7,6 (36–85)	t2WI, DWI, ADC	TZ, PZ
Woźnicki [16]	2020	Sensors	191	89	102	69 [63; 74]	t2WI, ADC	TZ, PZ

Таблица 2. Исходная характеристика включённых исследований (часть 1)

Примечание. РПЖ — рак предстательной железы; ПЖ — предстательная железа; МРТ — магнитно-резонансная томография; T2WI (T2 weighted image) — T2-взвешенные изображения; DWI (diffusion-weighted imaging) — диффузионно-взвешенные изображения; ADC (apparent diffusion coefficients) — измеряемые коэффициенты диффузии; TZ (transition zone) — переходная зона; PZ (peripheral zone) — периферическая зона.

В 4 (19%) исследованиях была проведена предобработка данных в виде нормализации полученных данных радиомики. В 6 (29%) исследованиях была проведена проверка данных на мультиколлинеарность: в 5 исследованиях использовался коэффициент корреляции Спирмена (Rs), и в одном — коэффициент корреляции Пирсона (Rp). В основном мультиколлинеарность оценивали, если коэффициент корреляции был более 0,9.

В 10 (48%) исследованиях была проведена процедура выбора наиболее значимых переменных. Чаще всего это было сделано с помощью LASSO (Least Absolute Shrinkage and Selection Operator), также использовались ANOVA (Analysis of Variance), DT (Decision Tree), RFE (Recursive Feature Elimination), WRST (Wilcoxon RankSum Test) и MRMR (Minimum Redundancy Maximum Relevance).

В 9 (43%) исследованиях была выделена тестовая выборка, на которой было проведено тестирование построенной прогностической модели. Тестовая выборка варьировалась в диапазоне от 17 до 48%. В 8 (38%) исследованиях была проведена кросс-валидация для выбора оптимальных моделей на основании подбора гиперпараметров для повышения точности модели.

В 7 (33%) исследованиях применялся тест Де Лонга (DeLong test) для оценки различия ROC-AUC построенных моделей.

Таблица 3. Исходная характеристика включённых исследований (часть 2)

Автор	Год	Норма- лизация данных	Мульти- коллине- арность	Выбор перемен- ных	Тестиро- вание, %	Кросс- валидация	Тест Де Лонга	Коррекция дисбаланса классов	Алгоритм МО
He [32]	2021	_	_	LASS0	30	10		_	MLR
Chen [31]	2019	—	Rs	LASSO	30	—	—	SMOTE	MLR
Jamshidi [33]	2022	—	_	—	—	—	_	—	KNN, CNN, DT, LDA
Han [30]	2022		_	_	_	_	+	_	MLR
Ayyad [29]	2022	_	_		_	5, 10	_	_	SVM, RF, DT, LDA
Li [28]	2023	—	—	LASSO	—	—	—	—	LDA
Jin [27]	2023	—	Rs ≥,9	ANOVA	17	—	—	SMOTE	SVM
Aussavavirojekul [34]	2022	—	—		—	—	—	_	MLR, SVM, NB, RF, XGB
Giambelluca [35]	2020		_		_	10		_	MLR
Viswanath [36]	2019	+	_		_	3	_	_	QDA, SVM, NB, DT
Ji [26]	2021	_	Rs ≥0,9	WRST, MRMR	48	10	_	_	SVM, RF, MLR
Hu [25]	2021		_	LASS0	_	_	+	_	MLR
McGarry [24]	2019	_	—	—	—	—	_	—	MLR
Ou [23]	2020	—	—	—	—	—	—	—	MLR
Zhong [22]	2023	—	—	LASSO, DT	30		+	—	MLR
Wu [21]	2019		—	—	_	10	+	—	MLR, SVM
Zhou [20]	2022				_				MLR
Lu [19]	2022	+	Rp >0,99	RFE	30	5	+	—	MLR, RF, SVM, LASSO, LDA, NB, KNN
Gui [18]	2022	+	Rs >0,9	LASS0	29	—	+	—	MLR
Li [17]	2021	+	_	ANOVA, LASSO	31	—	+	_	MLR
Woźnicki [16]	2020	_	Rs		21	5	_	_	MLR, SVM, RF, XGB, CNN

Примечание. МО — машинное обучение; Rs — коэффициент корреляции Спирмена; Rp — коэффициент корреляции Пирсона.

В 2 (10%) исследованиях была проведена коррекция дисбаланса классов при построении прогностических моделей методом SMOTE (Synthetic Minority Over-sampling Technique) [37].

Анализ показал, что наиболее часто авторы используют в своих исследованиях следующие алгоритмы MO: MLR (Multiple Logistic Regression) (76%), SVM (Support Vector Machine) (38%) и RF (Random Forest) (24%). Более детально данные представлены на рис. 2.

Общий анализ

По данным проведенного систематическрнр обзора с метаанализом оценки ROC-AUC в 73 прогностических моделях, описанных в изученных публикациях, с использованием метода случайных эффектов, мы выяснили, что итоговое значение ROC-AUC составило 0,793 (95%Cl 0,768–0,818), l^2 =86,71%, p <0,001 (рис. 3).

Анализ в подгруппах

Анализ полученных в ходе исследования данных по подгруппам показал следующие результаты.

В разрезе по использованному протоколу МРТисследования для построения прогностической модели значения ROC-AUC существенно различались: наиболее точные прогностические модели были построены на основании данных бпМРТ радиомики и данных лабораторных и инструментальных исследований пациента (Radiomics-Laboratory-Instrumental: 0,869 [95%CI 0,844–0,895]).

Рис. 2. Доля использованных алгоритмов машинного обучения в исследованиях. MLR — Multiple Logistic Regression; SVM — Support Vector Machine; RF — Random Forest; LDA — Linear Discriminant Analysis; DT — Decision Tree; NB — Naive Bayesian; KNN — K Nearest Neighbors; CNN — Convolutional Neural Network; XGB — eXtreme Gradient Boosting; QAD — Quadratic Discriminant Analysis.

Кроме того, важно отметить, что оценки ROC-AUC построенных моделей имели низкую гетерогенность (l^2 =22,71%, p=0,227). Чаще всего в исследованиях в качестве данных лабораторных и инструментальных исследований использовались значения PSA, PSAD, PV (объём простаты) или PI-RADS. Следует также отметить высокую точность моделей, построенных с использованием протоколов T2WI+ADC: 0,860 [95%CI 0,813 – 0,907], l^2 =78,36%, p <0,001 (рис. 4). Остальные протоколы показали более низкую точность:

T2WI: 0,735 [95%CI 0,681–0,789], *I*²=87,73%, *p* <0,001;

ADC: 0,764 [95%Cl 0,720–0,808], *l*²=81,36%, *p* <0,001;

T2WI+DWI+ADC: 0,791 [95%CI 0,718–0,865], *l*²=89,5%, *p* <0.001;

DWI: 0,742 [95%Cl 0,456–1,028], *l*²=94,51%, *p* <0,001; T2WI+DWI: 0,840 [95%Cl 0,720–0,960].

Если посмотреть на построенные модели исключительно с использованием радиомических характеристик и моделей, построенных на основе радиомики и клинических данных пациента, то метаанализ показал, что комбинированные модели оказались более точны:

Radiomics-Clinical: 0,869 [95%Cl 0,844–0,895], *I*²=22,71%, *p*=0,227;

Radiomics: 0,779 [95%Cl 0,751–0,807], *l*²=87,38%, *p* <0,001.

В разрезе по зоне исследования простаты значения ROC-AUC существенно не различались:

PZ-TZ: 0,797 [95%CI 0,763–0,831], /²=88,12%, p <0,001;

PZ: 0,789 [95%CI 0,637–0,942], *I*²=90,3%, *p* <0,001;

TZ: 0,786 [95%CI 0,749–0,823], /²=82,45%, p <0,001.

При рассмотрении прогностических моделей в зависимости от алгоритма их построения, выяснилось, что модели, построенные на основе алгоритма искусственного интеллекта CNN, оказались наиболее точными и показали наилучшие результаты (0,856 [95%CI 0,574–1,138]). Однако модели, построенные на основе CNN, оказались нестабильными в своей работе и наиболее гетерогенными (l^2 =95,75%, p <0,001). На втором месте шли модели, построенные на основе алгоритма MLR (0,852 [95%Cl 0,822; 0,883], l^2 =80,89%, p <0,001). Они показывают более стабильную работу. Модели, построенные с помощью следующих алгоритмов, оказались ниже среднего значения ROC-AUC в данном метаанализе:

SVM: 0,732 [95%Cl 0,668–0,796], l^2 =87,87%, p < 0,001; RF: 0,727 [95%Cl 0,662–0,793], l^2 =77,29%, p < 0,001; DT: 0,755 [95%Cl 0,667–0,843], l^2 =71,07%, p < 0,001; LDA: 0,796 [95%Cl 0,714–0,879], l^2 =79,95%, p < 0,001; NB: 0,662 [95%Cl 0,498–0,826], l^2 =93,86%, p < 0,001; XGB: 0,778 [95%Cl 0,720–0,837], l^2 =0%, p=0,533; QDA: 0,683 [95%Cl 0,601–0,765]; LASS0: 0,735 [95%Cl 0,666–0,804], l^2 =28%, p=0,239;

KNN: 0,720 [95%Cl 0,662–0,778], $l^2=0\%$, p=0,501.

В разрезе по открытости прогностической модели («белый ящик» — легко интерпретируемая модель — Open model; «чёрный ящик» — Close model), значения ROC-AUC существенно различались:

Open model: 0,834 [95%Cl 0,806-0,861], *I*²=81,76%, *p* <0,001;

Close model: 0,733 [95%Cl 0,695–0,771], *l*²=85,81%, *p* <0,001.

Кроме того, интересным представляется анализ процесса построения прогностических моделей. Было изучено, использовали ли авторы публикаций следующие приёмы.

1. Проверка признаков на мультиколлинеарность, т.к. включение в модель признаков, сильно коррелирующих между собой, может привести к тому, что они начинают компенсировать друг друга, затрудняя выявление независимого влияния каждой: становится трудно определить степень влияния каждой из них на исход.

Studies	Estin	nate (95	t C.I.)
H- (MI B TOWI D7 T7) (2024) 2024	0 775	10 702	0.0401
He (MLR 12WI P2-12) (2021) 2021	0.775	(0.702,	0.848)
He (MER T2WI-ADC PZ-TZ) (2021) 2021	0.855	(0.792.	0.918)
Chen (MLR T2WI PZ-TZ) (2019) 2021	0 985	(0.903	1 067)
Chen (MLR ADC PZ-TZ) (2019) 2019	0.982	(0.900,	1.064)
Chen (MLR T2WI-ADC PZ-TZ) (2019) 2019	0.999	(0.917,	1.081)
Jamshidi (CNN T2WI PZ-TZ) (2023) 2022	1.000	(0.918,	1.082)
Han (MLR Radiomics-Clinical PZ-TZ) (2022) 2022	0.911	(0.844,	0.978)
Han (MLR ADC PZ-TZ) (2022) 2022	0.887	(0.807,	0.967)
Ayyad (SVM T2WI-DWI-ADC PZ-TZ) (2022) 2022	0.781	(0.699,	0.863)
Ayyad (SVM Radiomics-Clinical PZ-TZ) (2022) 2022	0.882	(0.800,	0.964)
Ayyad (RF T2WI-DWI-ADC PZ-TZ) (2022) 2022	0.760	(0.678,	0.842)
Ayyad (RF Radiomics-Clinical PZ-TZ) (2022) 2022	0.858	(0.776,	0.940)
Ayyad (DT T2WI-DWI-ADC PZ-TZ) (2022) 2022	0.683	(0.601,	0.765)
Ayyad (D1 Radiomics-Clinical P2-12) (2022) 2022	0.838	(0.756,	0.920)
Ayyad (LDA 12WI-DWI-ADC P2-12) (2022) 2022	0.121	(0.045,	0.009)
Li (LDA T2WLDWLADC PZ-TZ) (2022) 2022	0.945	(0.863	1 027)
Jin (SVM T2WI PZ-TZ) (2023) 2023	0.650	(0.568.	0.732)
Jin (SVM ADC PZ-TZ) (2023) 2023	0.613	(0.531,	0.695)
Jin (SVM DWI PZ-TZ) (2023) 2023	0.598	(0.516,	0.680)
Jin (SVM T2WI-DWI-ADC PZ-TZ) (2023) 2023	0.763	(0.681,	0.845)
Aussavavirojekul (NB T2WI-DWI-ADC PZ-TZ) (2022) 2022	0.500	(0.418,	0.582) -
Aussavavirojekul (XGB T2WI-DWI-ADC PZ-TZ) (2022) 2022	0.760	(0.678,	0.842)
Giambelluca (MLR T2WI PZ-TZ) (2021) 2021	0.775	(0.634,	0.916)
Giambelluca (MLR ADC PZ-TZ) (2020) 2021	0.815	(0.674,	0.956)
Viswanath (DT T2WI PZ) (2019) 2019	0.744	(0.662,	0.826)
Viswanath (QDA 12WI PZ) (2019) 2019	0.683	(0.601,	0.765)
JI (IVILR 12VVI PZ-12) (2021) 2021	0.616	(0.534,	0.698)
JI (RF 12WI F2-12) (2021) 2021	0.601	(0.525,	0.683)
li (MLR ADC P7-T7) (2021) 2021	0.812	(0.730.	0.894)
Ji (RF ADC PZ-TZ) (2021) 2021	0.654	(0.572,	0.736)
JI (SVM ADC PZ-TZ) (2021) 2021	0.635	(0.553,	0.717)
Ji (MLR T2WI-ADC PZ-TZ) (2021) 2021	0.886	(0.804,	0.968)
Hu (MLR Radiomics-Clinical PZ-TZ) (2021) 2021	0.920	(0.838,	1.002)
Hu (MLR ADC PZ-TZ) (2021) 2021	0.850	(0.721,	0.979)
Hu (MLR DWI PZ-TZ) (2021) 2021	0.890	(0.784,	0.996)
McGarry (MLR 12WI-DWI-ADC PZ-1Z) (2019) 2019	0.790	(0.708,	0.872)
McGarry (MLR 12WI P2-12) (2019) 2019	0.580	(0.490,	0.862)
Ou (MLR Radiomics-Clinical PZ-TZ) (2010) 2020	0.800	(0.726.	0.874)
Zhong (MLR T2WI-DWI-ADC PZ-TZ) (2023) 2023	0.922	(0.840,	1.004)
Wu (MLR T2WI-ADC TZ) (2019) 2019	0.989	(0.907,	1.071)
Wu (SVM T2WI-ADC TZ) (2019) 2019	0.949	(0.867,	1.031)
Zhou (MLR ADC TZ) (2022) 2022	0.828	(0.746,	0.910)
Lu (RF ADC TZ) (2022) 2022	0.730	(0.648,	0.812)
Lu (SVM ADC TZ) (2022) 2022	0.700	(0.618,	0.782)
LU (MLR ADC TZ) (2022) 2022	0.700	(0.618,	0.782)
Lu (LDA ADC TZ) (2022) 2022	0.710	(0.628	0.792)
Lu (NB ADC TZ) (2022) 2022	0.779	(0.730,	0.828)
Lu (KNN ADC TZ) (2022) 2022	0.740	(0.658,	0.822)
Lu (RF T2WI TZ) (2022) 2022	0.680	(0.598,	0.762)
Lu (SVM T2WI TZ) (2022) 2022	0.808	(0.761,	0.855)
Lu (MLR T2WI TZ) (2022) 2022	0.780	(0.698,	0.862)
Lu (Lasso T2WI TZ) (2022) 2022	0.770	(0.688,	0.852)
Lu (LDA T2WI TZ) (2022) 2022	0.780	(0.698,	0.862)
Lu (NB 12WI 12) (2022) 2022	0.700	(0.618,	0.782)
Lu (NIN 1200112) (2022) 2022	0.844	(0.801	0.887)
Lu (MLR T2WI-ADC TZ) (2022) 2022	0.872	(0.835.	0.909)
Gui (MLR T2WI-DWI PZ-TZ) (2022) 2022	0.840	(0.720,	0.960)
Gui (MLR Radiomics-Clinical PZ-TZ) (2022) 2022	0.900	(0.810,	0.990)
Li (MLR Radiomics-Clinical PZ-TZ) (2021) 2021	0.937	(0.855,	1.019)
Li (MLR T2WI-DWI-ADC PZ) (2021) 2021	0.941	(0.859,	1.023)
Li (MLR T2WI-DWI-ADC TZ) (2021) 2021	0.926	(0.844,	1.008)
Woznicki (MLR T2WI-ADC PZ-TZ) (2020) 2020	0.800	(0.718,	0.882)
Woznicki (SVM T2WI-ADC PZ-TZ) (2020) 2020	0.799	(0.717,	0.881)
Woznicki (KF 12WI-ADG P2-12) (2020) 2020 Woznicki (XGB T2WI-ADC P7, T7) (2020) 2020	0.797	(0.715	0.879)
Woznicki (CNN T2WI-ADC PZ-TZ) (2020) 2020	0.712	(0.630	0.794)
Woznicki (MLR Radiomics-Clinical PZ-TZ) (2020) 2020	0.889	(0.807,	0.971)
Overall (I^2=86.71 % , P< 0.001)	0.793	(0.768,	0.818)

Рис. 3. Блобограмма отдельных прогностических моделей для объединённой площади под кривой (ROC-AUC) и 95% доверительный интервал характеристики рака предстательной железы. Горизонтальные линии представляют 95% доверительный интервал точечных оценок. Каждый сплошной прямоугольник представляет значение ROC-AUC отдельных моделей, а размер прямоугольника указывает на вес исследования. Ромб означает объединённое значение ROC-AUC всех 73 моделей в 21 исследовании. Пунктирная линия обозначает среднее значение ROC-AUC. TZ — переходная зона; PZ — периферическая зона, PZ-TZ — периферическая и переходная зоны.

Studies He

Estimate (95% C.I.)

544

He (MLR T2WI PZ-TZ) (2021)	0.775	(0.702,	0.848)	
Chen (MLR T2WI PZ-TZ) (2019)	0.985	(0.903,	1.067)	
Jamshidi (CNN T2WI PZ-TZ) (2023)	1.000	(0.918,	1.082)	
Jin (SVM T2WI PZ-TZ) (2023)	0.650	(0.568,	0.732)	_
Giambelluca (MLR T2WI PZ-TZ) (2021)	0.775	(0.634,	0.916)	
Viswanath (DT T2WI PZ) (2019)	0.744	(0.662,	0.826)	
Viswanath (QDA T2WI PZ) (2019)	0.683	(0.601,	0.765)	
Ji (MLR T2WI PZ-TZ) (2021)	0.616	(0.534,	0.698)	
Ji (RF T2WI PZ-TZ) (2021)	0.605	(0.523,	0.687)	
Ji (SVM T2WI PZ-TZ) (2021)	0.601	(0.519,	0.683)	-
McGarry (MLR T2WI PZ-TZ) (2019)	0.580	(0.498,	0.662)	
Lu (RF 12WI 12) (2022)	0.680	(0.598,	0.762)	
Lu (SVM 12WI 12) (2022)	0.808	(0.701,	0.855)	
Lu (MER 12001 12) (2022)	0.700	(0.000,	0.002)	
Lu (Lasso 12WI 12) (2022)	0.790	(0.698	0.862)	
Lu (NB T2WI TZ) (2022)	0.700	(0.618.	0.782)	
Lu (KNN T2WI TZ) (2022)	0.700	(0.618.	0.782)	
Subgroup T2WI (1^2=87.73 % . P=0.000)	0.735	(0.681.	0.789)	\sim
He (MLR ADC PZ-TZ) (2021)	0.863	(0.802,	0.924)	
Chen (MLR ADC PZ-TZ) (2019)	0.982	(0.900,	1.064)	
Han (MLR ADC PZ-TZ) (2022)	0.887	(0.807,	0.967)	
Jin (SVM ADC PZ-TZ) (2023)	0.613	(0.531,	0.695)	
Giambelluca (MLR ADC PZ-TZ) (2020)	0.815	(0.674,	0.956)	
Ji (MLR ADC PZ-TZ) (2021)	0.812	(0.730,	0.894)	·
Ji (RF ADC PZ-TZ) (2021)	0.654	(0.572,	0.736)	
Ji (SVM ADC PZ-TZ) (2021)	0.635	(0.553,	0.717)	
Hu (MLR ADC PZ-TZ) (2021)	0.850	(0.721,	0.979)	
McGarry (MLR ADC PZ-TZ) (2019)	0.780	(0.698,	0.862)	
Zhou (MLR ADC TZ) (2022)	0.828	(0.746,	0.910)	
Lu (RF ADC TZ) (2022)	0.730	(0.648,	0.812)	
Lu (SVM ADC 12) (2022)	0.700	(0.618,	0.782)	
Lu (MLR ADC 12) (2022)	0.700	(0.618,	0.782)	
	0.700	(0.610,	0.702)	
Lu (NB ADC TZ) (2022)	0.779	(0.730.	0.828)	
Lu (KNN ADC TZ) (2022)	0.740	(0.658.	0.822)	
			,	
Subgroup ADC (I^2=81.36 % , P=0.000)	0.764	(0.720,	0.808)	
Subgroup ADC (I^2=81.36 % , P=0.000)	0.764	(0.720,	0.808)	~
Subgroup ADC (I ² =81.36 % , P=0.000) He (MLR T2WI-ADC PZ-TZ) (2021)	0.764 0.855	(0.720, (0.792,	0.808)	
Subgroup ADC (I^2=81.36 % , P=0.000) He (MLR T2WI-ADC PZ-TZ) (2021) Chen (MLR T2WI-ADC PZ-TZ) (2019)	0.764 0.855 0.999	(0.720, (0.792, (0.917,	0.808) 0.918) 1.081)	~
Subgroup ADC (I^2=81.36 % , P=0.000) He (MLR T2WI-ADC PZ-TZ) (2021) Chen (MLR T2WI-ADC PZ-TZ) (2019) Ji (MLR T2WI-ADC PZ-TZ) (2021)	0.764 0.855 0.999 0.886	(0.720, (0.792, (0.917, (0.804,	0.918) 1.081) 0.968)	
Subgroup ADC (I ² 2=81.36 % , P=0.000) He (MLR T2WI-ADC PZ-TZ) (2021) Chen (MLR T2WI-ADC PZ-TZ) (2019) Ji (MLR T2WI-ADC PZ-TZ) (2021) Wu (MLR T2WI-ADC TZ) (2019)	0.764 0.855 0.999 0.886 0.989	(0.720, (0.792, (0.917, (0.804, (0.907,	0.918) 1.081) 0.968) 1.071)	
Subgroup ADC (I/2=81.36 % , P=0.000) He (MLR T2WI-ADC P2-T2) (2021) Chen (MLR T2WI-ADC P2-T2) (2019) Ji (MLR T2WI-ADC P2-T2) (2021) Wu (MLR T2WI-ADC T2) (2019) Wu (SVM T2WI-ADC T2) (2019)	0.764 0.855 0.999 0.886 0.989 0.949	(0.720, (0.792, (0.917, (0.804, (0.907, (0.867,	0.808) 0.918) 1.081) 0.968) 1.071) 1.031)	
Subgroup ADC (I/2=81.36 % , P=0.000) He (MLR T2WI-ADC PZ-TZ) (2021) Chen (MLR T2WI-ADC PZ-TZ) (2019) Ji (MLR T2WI-ADC PZ-TZ) (2021) Wu (MLR T2WI-ADC TZ) (2019) Wu (SVM T2WI-ADC TZ) (2019) Lu (MLR T2WI-ADC TZ) (2022)	0.764 0.855 0.999 0.886 0.989 0.949 0.872	(0.720, (0.792, (0.917, (0.804, (0.907, (0.867, (0.835,	0.918) 1.081) 0.968) 1.071) 1.031) 0.909)	
Subgroup ADC (I/2=81.36 % , P=0.000) He (MLR T2WI-ADC PZ-TZ) (2021) Chen (MLR T2WI-ADC PZ-TZ) (2019) Ji (MLR T2WI-ADC PZ-TZ) (2021) Wu (MLR T2WI-ADC TZ) (2019) Wu (MLR T2WI-ADC TZ) (2019) Lu (MLR T2WI-ADC TZ) (2022) Woznicki (MLR T2WI-ADC PZ-TZ) (2020)	0.764 0.855 0.999 0.886 0.989 0.949 0.872 0.872	(0.720, (0.792, (0.917, (0.804, (0.907, (0.867, (0.835, (0.718,	0.918) 1.081) 0.968) 1.071) 1.031) 0.909) 0.882)	
Subgroup ADC (I/2=81.36 % , P=0.000) He (MLR T2WI-ADC PZ-TZ) (2021) Chen (MLR T2WI-ADC PZ-TZ) (2019) Ji (MLR T2WI-ADC PZ-TZ) (2019) Wu (MLR T2WI-ADC TZ) (2019) Wu (MLR T2WI-ADC TZ) (2019) Lu (MLR T2WI-ADC TZ) (2022) Woznicki (MLR T2WI-ADC PZ-TZ) (2020) Woznicki (SVM T2WI-ADC PZ-TZ) (2020)	0.764 0.855 0.999 0.886 0.989 0.949 0.872 0.800 0.799	(0.720, (0.917, (0.804, (0.907, (0.867, (0.835, (0.718, (0.717,	0.918) 1.081) 0.968) 1.071) 1.031) 0.909) 0.882) 0.881)	_
Subgroup ADC (I/2=81.36 % , P=0.000) He (MLR T2WI-ADC PZ-TZ) (2021) Chen (MLR T2WI-ADC PZ-TZ) (2019) Ji (MLR T2WI-ADC PZ-TZ) (2021) Wu (MLR T2WI-ADC TZ) (2019) Lu (MLR T2WI-ADC TZ) (2019) Lu (MLR T2WI-ADC TZ) (2022) Woznicki (SVM T2WI-ADC PZ-TZ) (2020) Woznicki (FR T2WI-ADC PZ-TZ) (2020) Woznicki (FR T2WI-ADC PZ-TZ) (2020)	0.764 0.855 0.999 0.886 0.989 0.949 0.949 0.872 0.800 0.799 0.804	(0.720, (0.917, (0.804, (0.907, (0.867, (0.835, (0.718, (0.717, (0.722,	0.808) 0.918) 1.081) 0.968) 1.071) 1.031) 0.909) 0.882) 0.881) 0.886)	
Subgroup ADC (I ² 2=81.36 % , P=0.000) He (MLR T2WI-ADC PZ-TZ) (2021) Chen (MLR T2WI-ADC PZ-TZ) (2019) Ji (MLR T2WI-ADC PZ-TZ) (2019) Wu (SVM T2WI-ADC TZ) (2019) Wu (SVM T2WI-ADC TZ) (2019) Lu (MLR T2WI-ADC TZ) (2022) Woznicki (MLR T2WI-ADC PZ-TZ) (2020) Woznicki (SW T2WI-ADC PZ-TZ) (2020) Woznicki (KGB T2WI-ADC PZ-TZ) (2020) Woznicki (KGB T2WI-ADC PZ-TZ) (2020)	0.764 0.855 0.999 0.886 0.989 0.949 0.872 0.800 0.799 0.804 0.797 0.804	(0.720, (0.792, (0.917, (0.804, (0.907, (0.867, (0.835, (0.718, (0.717, (0.722, (0.715, (0.630)	0.918) 1.081) 0.968) 1.071) 1.031) 0.909) 0.882) 0.881) 0.886) 0.879) 0.704	
Subgroup ADC (I/2=81.36 % , P=0.000) He (MLR T2WI-ADC PZ-TZ) (2021) Chen (MLR T2WI-ADC PZ-TZ) (2019) Ji (MLR T2WI-ADC PZ-TZ) (2019) Wu (MLR T2WI-ADC TZ) (2019) Wu (MLR T2WI-ADC TZ) (2019) Lu (MLR T2WI-ADC TZ) (2020) Woznicki (MLR T2WI-ADC PZ-TZ) (2020) Woznicki (SMT TZWI-ADC PZ-TZ) (2020) Woznicki (SMT TZWI-ADC PZ-TZ) (2020) Woznicki (SMT TZWI-ADC PZ-TZ) (2020)	0.764 0.855 0.999 0.886 0.989 0.949 0.872 0.800 0.799 0.804 0.799 0.804 0.792 0.712 0.802	(0.720, (0.792, (0.917, (0.804, (0.907, (0.835, (0.718, (0.717, (0.722, (0.715, (0.630, (0.631,	0.918) 1.081) 0.968) 1.071) 1.031) 0.909) 0.882) 0.881) 0.886) 0.879) 0.794) 0.9074	
Subgroup ADC (I^2=81.36 % , P=0.000) He (MLR T2WI-ADC PZ-TZ) (2021) Chen (MLR T2WI-ADC PZ-TZ) (2019) Ji (MLR T2WI-ADC PZ-TZ) (2019) Wu (MLR T2WI-ADC TZ) (2019) Lu (MLR T2WI-ADC TZ) (2019) Lu (MLR TZWI-ADC TZ) (2020) Woznicki (MR TZWI-ADC PZ-TZ) (2020) Woznicki (RF TZWI-ADC PZ-TZ) (2020) Woznicki (RF TZWI-ADC PZ-TZ) (2020) Woznicki (RF TZWI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Subgroup T2WI-ADC (I^2=78.38 % , P=0.000)	0.764 0.855 0.999 0.886 0.989 0.949 0.872 0.800 0.799 0.804 0.797 0.712 0.860	(0.792, (0.917, (0.804, (0.907, (0.835, (0.718, (0.717, (0.722, (0.715, (0.630, (0.813,	0.918) 1.081) 0.968) 1.071) 1.031) 0.909) 0.882) 0.881) 0.886) 0.879) 0.794) 0.907)	
Subgroup ADC (I/2=81.36 % , P=0.000) He (MLR T2WI-ADC PZ-TZ) (2021) Chen (MLR T2WI-ADC PZ-TZ) (2019) Ji (MLR T2WI-ADC PZ-TZ) (2019) Wu (SVM T2WI-ADC TZ) (2019) Wu (SVM T2WI-ADC TZ) (2019) Lu (MLR T2WI-ADC TZ) (2022) Woznicki (MLR T2WI-ADC PZ-TZ) (2020) Woznicki (SVM T2WI-ADC PZ-TZ) (2020) Woznicki (SG TZWI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Subgroup T2WI-ADC (MZ-TA) 5% , P=0.000) Han (MLR Radiomics-Clinical PZ-TZ) (2022)	0.764 0.855 0.999 0.886 0.989 0.949 0.872 0.800 0.799 0.804 0.797 0.712 0.860 0.911	(0.720, (0.792, (0.917, (0.804, (0.907, (0.805, (0.335, (0.718, (0.717, (0.712, (0.715, (0.630, (0.813, (0.844,	0.918) 1.081) 0.968) 1.071) 1.071) 0.909) 0.882) 0.881) 0.886) 0.879) 0.794) 0.907) 0.978)	
Subgroup ADC (I ² 2=81.36 % , P=0.000) He (MLR T2WI-ADC PZ-TZ) (2021) Chen (MLR T2WI-ADC PZ-TZ) (2019) Ji (MLR T2WI-ADC PZ-TZ) (2019) Wu (MLR T2WI-ADC TZ) (2019) Wu (MLR T2WI-ADC TZ) (2019) Lu (MLR T2WI-ADC TZ) (2022) Woznicki (MLR T2WI-ADC PZ-TZ) (2020) Woznicki (SWT T2WI-ADC PZ-TZ) (2020) Woznicki (SWT T2WI-ADC PZ-TZ) (2020) Woznicki (CNR T2WI-ADC PZ-TZ) (2020) Woznicki (CNR T2WI-ADC PZ-TZ) (2020) Woznicki (CNR T2WI-ADC PZ-TZ) (2020) Woznicki (CNR T2WI-ADC PZ-TZ) (2020) Han (MLR Radiomics-Clinical PZ-TZ) (2022) Han (MLR Radiomics-Clinical PZ-TZ) (2022)	0.764 0.855 0.999 0.886 0.989 0.949 0.872 0.800 0.799 0.804 0.797 0.712 0.860 0.911 0.882	(0.720, (0.792, (0.917, (0.804, (0.907, (0.835, (0.718, (0.718, (0.717, (0.722, (0.715, (0.630, (0.813, (0.844, (0.800.	0.918) 1.081) 0.968) 1.071) 1.071) 1.031) 0.909) 0.882) 0.881) 0.886) 0.879) 0.794) 0.907) 0.978) 0.964)	
Subgroup ADC (I/2=81.36 % , P=0.000) He (MLR T2WI-ADC PZ-TZ) (2021) Chen (MLR T2WI-ADC PZ-TZ) (2019) Ji (MLR T2WI-ADC PZ-TZ) (2019) Wu (MLR T2WI-ADC TZ) (2019) Wu (MLR T2WI-ADC TZ) (2019) Lu (MLR T2WI-ADC TZ) (2020) Woznicki (MLR T2WI-ADC PZ-TZ) (2020) Woznicki (KB T2WI-ADC PZ-TZ) (2020) Woznicki (KGB T2WI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Han (MLR Radiomics-Clinical PZ-TZ) (2022) Ayyad (SVM Radiomics-Clinical PZ-TZ) (2022) Ayyad (SVM Radiomics-Clinical PZ-TZ) (2022)	0.764 0.855 0.999 0.886 0.989 0.949 0.872 0.800 0.799 0.804 0.797 0.712 0.860 0.911 0.882 0.858	(0.720, (0.792, (0.917, (0.804, (0.907, (0.835, (0.718, (0.718, (0.717, (0.722, (0.715, (0.630, (0.813, (0.844, (0.800, (0.776,	0.918) 1.081) 0.968) 1.071) 1.031) 0.909) 0.882) 0.881) 0.886) 0.879) 0.794) 0.9791 0.978) 0.964) 0.940)	
Subgroup ADC (I/2=81.36 % , P=0.000) He (MLR T2WI-ADC PZ-TZ) (2021) Chen (MLR T2WI-ADC PZ-TZ) (2019) Ji (MLR T2WI-ADC PZ-TZ) (2019) Wu (SVM T2WI-ADC TZ) (2019) Wu (SVM T2WI-ADC TZ) (2019) Lu (MLR T2WI-ADC TZ) (2022) Woznicki (MLR T2WI-ADC PZ-TZ) (2020) Woznicki (SM T2WI-ADC PZ-TZ) (2020) Woznicki (SM T2WI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Han (MLR Radiomics-Clinical PZ-TZ) (2022) Ayyad (KF Radiomics-Clinical PZ-TZ) (2022) Ayyad (KF Radiomics-Clinical PZ-TZ) (2022) Ayyad (KF Radiomics-Clinical PZ-TZ) (2022)	0.764 0.855 0.999 0.886 0.949 0.872 0.800 0.799 0.804 0.797 0.712 0.712 0.860 0.911 0.882 0.858 0.838	(0.720, (0.912, (0.917, (0.804, (0.907, (0.867, (0.785, (0.715, (0.715, (0.715, (0.813, (0.844, (0.800, (0.776, (0.756,	0.918) 1.081) 0.968) 1.071) 1.031) 0.909) 0.882) 0.881) 0.886) 0.879) 0.794) 0.907) 0.978) 0.964) 0.920)	
Subgroup ADC (I ² 2=81.36 % , P=0.000) He (MLR T2WI-ADC PZ-TZ) (2021) Chen (MLR T2WI-ADC PZ-TZ) (2019) Ji (MLR T2WI-ADC PZ-TZ) (2019) Wu (MLR T2WI-ADC TZ) (2019) Wu (MLR T2WI-ADC TZ) (2019) Lu (MLR T2WI-ADC TZ) (2020) Woznicki (MLR T2WI-ADC PZ-TZ) (2020) Woznicki (SWI T2WI-ADC PZ-TZ) (2020) Woznicki (SWI T2WI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Han (MLR Radiomics-Clinical PZ-TZ) (2022) Ayyad (SWI Radiomics-Clinical PZ-TZ) (2022) Ayyad (UT Radiomics-Clinical PZ-TZ) (2022) Ayyad (UT Radiomics-Clinical PZ-TZ) (2022) Ayyad (UT Radiomics-Clinical PZ-TZ) (2022) Han (MLR Radiomics-Clinical PZ-TZ) (2022) Ayyad (UT Radiomics-Clinical PZ-TZ) (2022) Ayyad (UT Radiomics-Clinical PZ-TZ) (2022)	0.764 0.855 0.999 0.886 0.989 0.949 0.872 0.800 0.799 0.804 0.797 0.712 0.860 0.911 0.852 0.858 0.838 0.820	(0.720, (0.792, (0.917, (0.907, (0.804, (0.907, (0.835, (0.718, (0.718, (0.717, (0.722, (0.715, (0.630, (0.813, (0.813, (0.844, (0.800, (0.776, (0.736, (0.736,	0.918) 1.081) 0.968) 1.071) 1.031) 0.909) 0.882) 0.882) 0.884) 0.886) 0.879) 0.794) 0.978) 0.978) 0.964) 0.940) 0.920)	
Subgroup ADC (I ² 2=81.36 % , P=0.000) He (MLR T2WI-ADC PZ-TZ) (2021) Chen (MLR T2WI-ADC PZ-TZ) (2019) Ji (MLR T2WI-ADC PZ-TZ) (2019) Wu (MLR T2WI-ADC PZ-TZ) (2019) Wu (MLR T2WI-ADC TZ) (2019) Lu (MLR T2WI-ADC TZ) (2019) Woznicki (MLR T2WI-ADC PZ-TZ) (2020) Woznicki (SWT T2WI-ADC PZ-TZ) (2020) Subgroup T2WI-ADC (I [*] 2=78.36 % , P=0.000) Han (MLR Radiomics-Clinical PZ-TZ) (2022) Ayyad (SWR Radiomics-Clinical PZ-TZ) (2022) Ayyad (DT Radiomics-Clinical PZ-TZ) (2022) Ayyad (LDA Radiomics-Clinical PZ-TZ) (2022) Hu (MLR Radiomics-Clinical PZ-TZ) (2022)	0.764 0.855 0.999 0.886 0.989 0.949 0.800 0.799 0.800 0.799 0.712 0.860 0.911 0.882 0.858 0.838 0.838 0.820 0.920	(0.720, (0.792, (0.917, (0.9017, (0.904, (0.907, (0.835, (0.718, (0.718, (0.718, (0.712, (0.715, (0.630, (0.813, (0.844, (0.800, (0.776, (0.738, (0.0338,	0.918) 1.081) 0.968) 1.071) 1.031) 0.909) 0.882) 0.881) 0.886) 0.879) 0.794) 0.9791 0.978) 0.978) 0.964) 0.920) 0.902)	
Subgroup ADC (I/2=81.36 % , P=0.000) He (MLR T2WI-ADC PZ-TZ) (2021) Chen (MLR T2WI-ADC PZ-TZ) (2019) Ji (MLR T2WI-ADC PZ-TZ) (2019) Wu (SVM T2WI-ADC TZ) (2019) Wu (SVM T2WI-ADC TZ) (2019) Uu (MLR T2WI-ADC TZ) (2021) Woznicki (MLR T2WI-ADC PZ-TZ) (2020) Woznicki (RF T2WI-ADC PZ-TZ) (2020) Woznicki (RF TZWI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) How (CNN T2WI-ADC PZ-TZ) (2020) Han (MLR Radiomics-Clinical PZ-TZ) (2022) Ayyad (SVM Radiomics-Clinical PZ-TZ) (2022) Ayyad (LDA Radiomics-Clinical PZ-TZ) (2022) Hu (MLR Radiomics-Clinical PZ-TZ) (2021) Hu (MLR Radiomics-Clinical PZ-TZ) (2021)	0.764 0.855 0.999 0.886 0.989 0.949 0.872 0.800 0.799 0.804 0.797 0.712 0.860 0.911 0.882 0.858 0.828 0.858 0.820 0.920 0.800	(0.720, (0.792, (0.917, (0.804, (0.907, (0.835, (0.718, (0.715, (0.715, (0.630, (0.813, (0.844, (0.800, (0.776, (0.756, (0.738, (0.338, (0.226,	0.918) 1.081) 0.968) 1.071) 1.031) 0.909) 0.882) 0.881) 0.886) 0.794) 0.794) 0.907) 0.978) 0.978) 0.964) 0.920) 0.920) 0.920) 0.920) 0.920) 0.921	
Subgroup ADC (I ² 2=81.36 % , P=0.000) He (MLR T2WI-ADC PZ-TZ) (2021) Chen (MLR T2WI-ADC PZ-TZ) (2019) Ji (MLR T2WI-ADC PZ-TZ) (2019) Wu (MLR T2WI-ADC TZ) (2019) Wu (MLR T2WI-ADC TZ) (2019) Uu (MLR T2WI-ADC TZ) (2022) Woznicki (MLR T2WI-ADC PZ-TZ) (2020) Woznicki (SWT T2WI-ADC PZ-TZ) (2020) Woznicki (SWT T2WI-ADC PZ-TZ) (2020) Woznicki (SWT T2WI-ADC PZ-TZ) (2020) Woznicki (SWT T2WI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Han (MLR Radiomics-Clinical PZ-TZ) (2022) Ayyad (SWI Radiomics-Clinical PZ-TZ) (2022) Ayyad (CNR Radiomics-Clinical PZ-TZ) (2022) Ayyad (DL Radiomics-Clinical PZ-TZ) (2022) Hu (MLR Radiomics-Clinical PZ-TZ) (2021) Ou (MLR Radiomics-Clinical PZ-TZ) (2022) La (MLR Radiomics-Clinical PZ-TZ) (2021) UL (MLR Radiomics-Clinical PZ-TZ) (2022) LU (MLR Radiomics-Clinical PZ-TZ) (2022)	0.764 0.855 0.999 0.886 0.989 0.949 0.872 0.800 0.799 0.804 0.799 0.804 0.792 0.804 0.712 0.860 0.911 0.886 0.820 0.920 0.804	(0.720, (0.792, (0.917, (0.804, (0.907, (0.867, (0.335, (0.717, (0.715, (0.715, (0.630, (0.813, (0.844, (0.800, (0.776, (0.756, (0.738, (0.339, (0.826, (0.812, (0.814, (0.802, (0.813, (0.813, (0.814, (0.803, (0.813, (0.713, (0.733, (0.733, (0.733, (0.733, (0.833, (0.813,))))))))))))))))))))))))))))))))))))	0.918) 1.081) 0.968) 1.071) 1.031) 0.909) 0.882) 0.882) 0.883) 0.886) 0.879) 0.978) 0.978) 0.978) 0.920) 0.920) 0.922) 1.002) 0.887)	
Subgroup ADC (I ² 2=81.36 % , P=0.000) He (MLR T2WI-ADC PZ-TZ) (2021) Chen (MLR T2WI-ADC PZ-TZ) (2019) Ji (MLR T2WI-ADC PZ-TZ) (2019) Wu (MLR T2WI-ADC TZ) (2019) Wu (MLR T2WI-ADC TZ) (2019) Lu (MLR T2WI-ADC TZ) (2022) Woznicki (MLR T2WI-ADC PZ-TZ) (2020) Woznicki (SWT T2WI-ADC PZ-TZ) (2020) Subgroup T2WI-ADC (I ^A 2=78.36 % , P=0.000) Han (MLR Radiomics-Clinical PZ-TZ) (2022) Ayyad (SWR Radiomics-Clinical PZ-TZ) (2022) Ayyad (DT Radiomics-Clinical PZ-TZ) (2022) Ayyad (DLR Radiomics-Clinical PZ-TZ) (2022) Hu (MLR Radiomics-Clinical PZ-TZ) (2022) Hu (MLR Radiomics-Clinical PZ-TZ) (2022) Lu (MLR Radiomics-Clinical PZ-TZ) (2022) Lu (MLR Radiomics-Clinical PZ-TZ) (2022) Lu (MLR Radiomics-Clinical PZ-TZ) (2022) Lu (MLR Radiomics-Clinical PZ-TZ) (2022) Hu (MLR Radiomics-Clinical PZ-T	0.764 0.855 0.999 0.886 0.989 0.949 0.872 0.800 0.799 0.804 0.799 0.7120	(0.720, (0.792, (0.917, (0.804, (0.907, (0.835, (0.718, (0.718, (0.715, (0.722, (0.715, (0.630, (0.844, (0.800, (0.776, (0.756, (0.736, (0.338, (0.338, (0.810, (0.810,	0.918) 1.081) 0.968) 1.071) 0.909) 0.882) 0.882) 0.884) 0.886) 0.794) 0.794) 0.907) 0.907) 0.904) 0.920) 0.920) 0.920) 1.002) 0.874) 0.887) 0.987)	
Subgroup ADC (I/2=81.36 % , P=0.000) He (MLR T2WI-ADC PZ-TZ) (2021) Chen (MLR T2WI-ADC PZ-TZ) (2019) Ji (MLR T2WI-ADC PZ-TZ) (2019) Wu (MLR T2WI-ADC TZ) (2019) Wu (MLR T2WI-ADC TZ) (2019) Lu (MLR T2WI-ADC TZ) (2020) Woznicki (MLR T2WI-ADC PZ-TZ) (2020) Woznicki (KGB T2WI-ADC PZ-TZ) (2020) Woznicki (KGB T2WI-ADC PZ-TZ) (2020) Woznicki (KGB T2WI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Han (MLR Radiomics-Clinical PZ-TZ) (2022) Ayyad (FX Radiomics-Clinical PZ-TZ) (2022) Ayyad (CNR Radiomics-Clinical PZ-TZ) (2022) Ayyad (DT Radiomics-Clinical PZ-TZ) (2022) Ayyad (LDR Radiomics-Clinical PZ-TZ) (2022) Hu (MLR Radiomics-Clinical PZ-TZ) (2022) Gui (MLR Radiomics-Clinical PZ-TZ) (2022) Lu (MLR Radiomics-Clinical PZ-TZ) (2021) Lu (MLR Radiomics-Clinical PZ-TZ) (20	0.764 0.855 0.999 0.886 0.989 0.949 0.949 0.872 0.800 0.792 0.804 0.797 0.712 0.860 0.9911 0.882 0.882 0.882 0.882 0.820 0.820 0.920 0.8200 0.82000 0.82000 0.820000000000	(0.720, (0.917, (0.907, (0.907, (0.907, (0.967, (0.735, (0.713, (0.712, (0.715, (0.630, (0.913, (0.913, (0.913, (0.913, (0.756, (0.756, (0.756, (0.738, (0.901, (0.901, (0.845, (0.845, (0.912	0.918) 1.081) 0.968) 1.071) 1.071) 1.031) 0.909) 0.882) 0.882) 0.884) 0.886) 0.794) 0.974) 0.978) 0.964) 0.940) 0.940) 0.940) 0.920) 0.940) 0.9200 0.9200	
Subgroup ADC (I ² 2=81.36 % , P=0.000) He (MLR T2WI-ADC PZ-TZ) (2021) Chen (MLR T2WI-ADC PZ-TZ) (2019) Ji (MLR T2WI-ADC PZ-TZ) (2019) Wu (MLR T2WI-ADC TZ) (2019) Wu (MLR T2WI-ADC TZ) (2019) Uu (MLR T2WI-ADC TZ) (2020) Woznicki (SWI T2WI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Subgroup T2WI-ADC (PZ-R38 % , P=0.000) Han (MLR Radiomics-Clinical PZ-TZ) (2022) Ayyad (SWI Radiomics-Clinical PZ-TZ) (2022) Ayyad (DL Radiomics-Clinical PZ-TZ) (2022) Ayyad (DL Radiomics-Clinical PZ-TZ) (2022) Hu (MLR Radiomics-Clinical PZ-TZ) (2022) U (MLR Radiomics-Clinical PZ-TZ) (2022) H (MLR Radiomics-Clinical	0.764 0.855 0.999 0.886 0.949 0.872 0.804 0.799 0.804 0.797 0.712 0.800 0.800 0.882 0.882 0.858 0.820 0.858 0.820 0.858 0.820 0.858 0.820 0.858 0.820 0.855 0.820 0.855 0.920 0.844 0.937	(0.720, (0.792, (0.917, (0.804, (0.907, (0.867, (0.335, (0.713, (0.715, (0.715, (0.630, (0.813, (0.844, (0.800, (0.776, (0.738, (0.738, (0.338, (0.301, (0.801, (0.807,	0.918) 1.081) 0.968) 1.071) 1.031) 0.909) 0.882) 0.881) 0.886) 0.794) 0.9791 0.978) 0.964) 0.940) 0.920) 1.002) 0.902) 1.002) 0.887) 0.887) 0.981)	
Subgroup ADC (I ^A 2=81.36 % , P=0.000) He (MLR T2WI-ADC PZ-TZ) (2021) Chen (MLR T2WI-ADC PZ-TZ) (2019) Ji (MLR T2WI-ADC PZ-TZ) (2019) Wu (MLR T2WI-ADC PZ-TZ) (2019) Wu (MLR T2WI-ADC TZ) (2019) Uu (MLR T2WI-ADC TZ) (2022) Woznicki (MLR T2WI-ADC PZ-TZ) (2020) Woznicki (SWI T2WI-ADC PZ-TZ) (2020) Woznicki (SWI T2WI-ADC PZ-TZ) (2020) Woznicki (SGB T2WI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Han (MLR Radiomics-Clinical PZ-TZ) (2022) Ayyad (SVM Radiomics-Clinical PZ-TZ) (2022) Ayyad (VR Radiomics-Clinical PZ-TZ) (2022) Hu (MLR Radiomics-Clinical PZ-TZ) (2021) Hu (MLR Radiomics-Clinical PZ-TZ) (2022) Hu (MLR Radiomics-Clinical PZ-TZ) (2021) Hu (MLR Radiomics-Clinical PZ-TZ)	0.764 0.855 0.999 0.886 0.949 0.872 0.804 0.872 0.804 0.799 0.712 0.806 0.812 0.858 0.838 0.858 0.838 0.858 0.820 0.920 0.920 0.800 0.920 0.800 0.937 0.937 0.936 0.937	(0.720, (0.917, (0.904, (0.904, (0.907, (0.867, (0.835, (0.715, (0.715, (0.715, (0.715, (0.715, (0.732, (0.813, (0.844, (0.903, (0.736, (0.338, (0.338, (0.338, (0.338, (0.939, (0.810	0.808) 0.918) 1.081) 1.081) 1.071) 1.071) 1.071) 0.9682 0.882) 0.882) 0.882) 0.882) 0.882) 0.874) 0.920) 0.920) 0.920) 0.920) 0.9202) 1.002) 0.824) 0.827) 0.824) 0.827) 0.824) 0.827) 0.939) 1.022 0.939) 1.022 0.939) 0.9390 0.9390 0.9391	
Subgroup ADC (I ^A 2=81.36 % , P=0.000) He (MLR T2WI-ADC PZ-TZ) (2021) Chen (MLR T2WI-ADC PZ-TZ) (2019) Ji (MLR T2WI-ADC PZ-TZ) (2019) Wu (MLR T2WI-ADC PZ-TZ) (2019) Uu (MLR T2WI-ADC TZ) (2019) Lu (MLR T2WI-ADC TZ) (2020) Woznicki (MLR T2WI-ADC PZ-TZ) (2020) Woznicki (SWT T2WI-ADC PZ-TZ) (2020) Subgroup T2WI-ADC (I ^A 2=78.36 % , P=0.000) Han (MLR Radiomics-Clinical PZ-TZ) (2022) Ayyad (SVM Radiomics-Clinical PZ-TZ) (2022) Ayyad (DT Radiomics-Clinical PZ-TZ) (2022) Ayyad (DLR Radiomics-Clinical PZ-TZ) (2022) Ayyad (ULR Radiomics-Clinical PZ-TZ) (2022) Lu (MLR Radiomics-Cli	0.764 0.855 0.999 0.890 0.949 0.799 0.804 0.797 0.804 0.797 0.804 0.792 0.804 0.792 0.802 0.802 0.802 0.802 0.804 0.900 0.844 0.900 0.845 0.885 0.895 0.995 0.	(0.720, (0.792, (0.917, (0.804, (0.907, (0.867, (0.835, (0.718, (0.717, (0.722, (0.715, (0.630, (0.813, (0.813, (0.844, (0.800, (0.776, (0.756, (0.738, (0.378, (0.301, (0.801, (0.855, (0.807, (0.844, (0.807, (0.867, (0.867, (0.855, (0.867, (0.776, (0.776, (0.776, (0.776, (0.776, (0.776, (0.776, (0.776, (0.867, (0.776, (0.776, (0.776, (0.776, (0.867, (0.867, (0.867, (0.867, (0.776, (0.776, (0.867, (0.867, (0.867, (0.776, (0.776, (0.867, (0.867, (0.867, (0.867, (0.776, (0.766, (0.867	0.808) 0.918) 1.081) 0.968) 1.071) 1.031) 0.909) 0.882) 0.882) 0.882) 0.882) 0.883) 0.879) 0.964) 0.964) 0.940) 0.8471 0.940) 0.940) 0.940) 0.940) 0.8471 0.940) 0.8471 0.940) 0.8471 0.940) 0.8471 0.940) 0.8471 0.940) 0.8471 0.940) 0.940] 0.8471 0.940] 0.945]	
Subgroup ADC (I/2=81.36 % , P=0.000) He (MLR T2WI-ADC P2-T2) (2021) Chen (MLR T2WI-ADC P2-T2) (2019) JJ (MLR T2WI-ADC P2-T2) (2019) Wu (SVM T2WI-ADC P2) (2021) Wu (SVM T2WI-ADC T2) (2019) Lu (MLR T2WI-ADC T2) (2029) Woznicki (MLR T2WI-ADC P2-T2) (2020) Woznicki (SW T2WI-ADC P2-T2) (2020) Woznicki (SGB T2WI-ADC P2-T2) (2020) Woznicki (SGB T2WI-ADC P2-T2) (2020) Woznicki (SGB T2WI-ADC P2-T2) (2020) Woznicki (SGB T2WI-ADC P2-T2) (2020) Subgroup T2WI-ADC P2-T2) (2020) Han (MLR Radiomics-Clinical P2-T2) (2022) Ayyad (SVM Radiomics-Clinical P2-T2) (2022) Ayyad (SVM Radiomics-Clinical P2-T2) (2022) Ayyad (RF Radiomics-Clinical P2-T2) (2022) Ayyad (LDA Radiomics-Clinical P2-T2) (2022) Ayyad (LDA Radiomics-Clinical P2-T2) (2022) Hu (MLR Radiomics-Clinical P2-T2) (2022) Lu (MLR Radiomics-Clinical P2-T2) (2022) Subgroup Radiomics-Clinical P2-T2) (2022) Subgroup Radiomics-Clinical P2-T2) (2022) Ayyad (SVM T2WI-DWI-ADC P2-T2) (2022) Ayya	0.764 0.855 0.999 0.886 0.999 0.872 0.800 0.799 0.804 0.772 0.800 0.911 0.882 0.858 0.838 0.820 0.920 0.800 0.920 0.800 0.822 0.800 0.822 0.800 0.823 0.820 0.781 0.760 0.770 0.	(0.720, (0.917, (0.907, (0.907, (0.907, (0.967, (0.935, (0.718, (0.718, (0.718, (0.718, (0.715, (0.630, (0.715, (0.630, (0.716, (0.738, (0.738, (0.339, (0.339, (0.339, (0.844, (0.801, (0.810, (0.855, (0.97, (0.844, (0.97, (0.844, (0.97, (0.844, (0.97, (0.844, (0.97, (0.844, (0.97, (0.844, (0.97, (0.97, (0.839, (0.97	0.808) 0.918) 1.081) 1.071) 1.031) 1.031) 0.909) 0.802) 0.802) 0.886) 0.879) 0.794) 0.941) 0.944) 0.944) 0.944) 0.944) 0.944) 0.944) 0.944) 0.944) 0.944) 0.944) 0.944) 0.944) 0.944) 0.944) 0.945) 0.944) 0.945) 0.944) 0.945) 0.944) 0.9453 0.944) 0.9453 0.9441 0.9453 0.9455 0.9455 0.9455 0.9455 0.9455 0.9455 0.9455 0.9455 0.9455 0.9455 0.9455	
Subgroup ADC (I ^A 2=81.36 % , P=0.000) He (MLR T2WI-ADC PZ-TZ) (2021) Chen (MLR T2WI-ADC PZ-TZ) (2019) Ji (MLR T2WI-ADC PZ-TZ) (2019) Wu (MLR T2WI-ADC PZ-TZ) (2019) Wu (MLR T2WI-ADC TZ) (2019) Uu (MLR T2WI-ADC TZ) (2021) Woznicki (MLR T2WI-ADC PZ-TZ) (2020) Woznicki (SWT T2WI-ADC PZ-TZ) (2020) Woznicki (SWT T2WI-ADC PZ-TZ) (2020) Woznicki (SWT T2WI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Subgroup T2WI-ADC (PZ-TZ) (2022) Ayyad (SVM Radiomics-Clinical PZ-TZ) (2022) Ayyad (SVM Radiomics-Clinical PZ-TZ) (2022) Ayyad (UR Radiomics-Clinical PZ-TZ) (2022) Ayyad (UR Radiomics-Clinical PZ-TZ) (2022) Hu (MLR Radiomics-Clinical PZ-TZ) (2022) Hu (MLR Radiomics-Clinical PZ-TZ) (2022) Li (MLR Radiomics-Clinical PZ-TZ) (2022) Li (MLR Radiomics-Clinical PZ-TZ) (2022) Subgroup Radiomics-Clinical PZ-TZ) (2022) Ayyad (SVM T2WI-DWI-ADC PZ-TZ) (2022) Ayyad (KF T2WI-DWI-ADC PZ-TZ) (2022)	0.764 0.855 0.999 0.886 0.989 0.949 0.949 0.800 0.702 0.800 0.712 0.800 0.712 0.860 0.920 0.820 0.820 0.820 0.800 0.800 0.820 0.800 0.820 0.808 0.820 0.808 0.820 0.808 0.820 0.808 0.820 0.808 0.820 0.808 0.820 0.808 0.820 0.808 0.820 0.808 0.820 0.808 0.820 0.808 0.820 0.808 0.820 0.808 0.820 0.808 0.820 0.808 0.820 0.820 0.808 0.820 0.808 0.820 0.808 0.820 0.808 0.820 0.808 0.820 0.808 0.820 0.808 0.820 0.808 0.820 0.808 0.820 0.808 0.820 0.808 0.820 0.808 0.820 0.808 0.808 0.820 0.808 0.808 0.820 0.808 0.807 0.808 0.807 0.808 0.807 0.608 0.608 0.608 0.608 0.608 0.608 0.608 0.608 0.908 0.908 0.608 0.608 0.908 0.908 0.608 0.608 0.908 0.908 0.608 0.908 0.908 0.608 0.908 0.908 0.908 0.608 0.908 0.	(0.720, (0.917, (0.904, (0.904, (0.904, (0.904, (0.904, (0.905, (0.718, (0.718, (0.718, (0.725, (0.715, (0.630, (0.715, (0.630, (0.736, (0.736, (0.736, (0.338, (0.338, (0.338, (0.936, (0.810	0.909) 0.918) 1.081) 1.071) 1.071) 1.031) 0.909) 0.882) 0.882) 0.886) 0.879) 0.886) 0.8879) 0.794) 0.902) 1.002) 0.902) 1.002) 0.902) 1.002) 0.887) 0.902) 0.887) 0.902) 0.902) 1.002) 0.887) 0.902) 0.887) 0.902) 0.887) 0.902) 0.887) 0.902) 0.887) 0.902) 0.887) 0.902) 0.887) 0.902) 0.887) 0.902) 0.902) 0.902) 0.902) 0.902) 0.902) 0.902) 0.902) 0.902) 0.902) 0.902) 0.903) 0.902) 0.902) 0.903) 0.902	
Subgroup ADC (I ^A 2=81.36 % , P=0.000) He (MLR T2WI-ADC PZ-TZ) (2021) Chen (MLR T2WI-ADC PZ-TZ) (2019) Ji (MLR T2WI-ADC PZ-TZ) (2019) Wu (MLR T2WI-ADC PZ) (2019) Wu (MLR T2WI-ADC TZ) (2019) Lu (MLR T2WI-ADC TZ) (2020) Woznicki (MLR T2WI-ADC PZ-TZ) (2020) Woznicki (SWT T2WI-ADC PZ-TZ) (2020) Subgroup T2WI-ADC (I^2=78.36 % , P=0.000) Han (MLR Radiomics-Clinical PZ-TZ) (2022) Ayyad (SWR Radiomics-Clinical PZ-TZ) (2022) Ayyad (DR Radiomics-Clinical PZ-TZ) (2022) Ayyad (UR Radiomics-Clinical PZ-TZ) (2022) Hu (MLR Radiomics-Clinical PZ-TZ) (2022) Hu (MLR Radiomics-Clinical PZ-TZ) (2022) Hu (MLR Radiomics-Clinical PZ-TZ) (2022) Gui (MLR Radiomics-Clinical PZ-TZ) (2022) Subgroup Radiomics-Clinical PZ-TZ) (2022) Ayyad (SVM TZWI-DWI-ADC PZ-TZ) (2022) Ayyad (DT TZWI-DWI-ADC PZ-TZ) (2022) Ayyad (DT TZWI-DWI-ADC PZ-TZ) (2022) Ayyad (DT TZWI-DWI-ADC PZ-TZ) (2022) Ayyad (DT TZWI-DWI-ADC PZ-TZ) (2022)	0.764 0.855 0.999 0.866 0.899 0.872 0.800 0.797 0.712 0.860 0.912 0.860 0.920 0.858 0.320 0.804 0.920 0.844 0.900 0.844 0.900 0.848 0.828 0.849 0.858 0.820 0.844 0.900 0.846 0.846 0.859 0.846 0.855 0.846 0.855 0.	(0.720, (0.792, (0.917, (0.907, (0.967, (0.967, (0.717, (0.712, (0.712, (0.712, (0.713, (0.630, (0.813, (0.630, (0.76, (0.76, (0.756, (0.330, (0.776, (0.330, (0.330, (0.930, (0.930, (0.930, (0.935, (0.930, (0.930, (0.935, (0.930,	0.908) 0.918) 1.081) 0.968) 1.071) 1.031) 0.909) 0.882) 0.882) 0.887) 0.9791 0.964) 0.964) 0.9201 1.002) 0.887) 0.9290 1.0191 0.9290 1.0191 0.9290 0.887) 0.885) 0.863) 0.862) 0.862)	
Subgroup ADC (I/2=81.36 % , P=0.000) He (MLR T2WI-ADC P2-T2) (2021) Chen (MLR T2WI-ADC P2-T2) (2019) JJ (MLR T2WI-ADC P2-T2) (2019) Wu (SVM T2WI-ADC P2) (2021) Wu (SVM T2WI-ADC T2) (2019) Uu (MLR T2WI-ADC T2) (2029) Woznicki (RUR T2WI-ADC P2-T2) (2020) Woznicki (RT T2WI-ADC P2-T2) (2020) Woznicki (RSB T2WI-ADC P2-T2) (2020) Subgroup T2WI-ADC P2-T2) (2020) Han (MLR Radiomics-Clinical P2-T2) (2022) Ayyad (SVM Radiomics-Clinical P2-T2) (2022) Ayyad (RF Radiomics-Clinical P2-T2) (2022) Ayyad (KR Radiomics-Clinical P2-T2) (2022) Ayyad (LDA Radiomics-Clinical P2-T2) (2022) Hu (MLR Radiomics-Clinical P2-T2) (2022) Gui (MLR Radiomics-Clinical P2-T2) (2022) Gui (MLR Radiomics-Clinical P2-T2) (2022) Gui (MLR Radiomics-Clinical P2-T2) (2022) Lu (MLR Radiomics-Clinical P2-T2) (2022) Gui (MLR Radiomics-Clinical P2-T2) (2022) Lu (MLR Radiomics-Clinical P2-T2) (2022) Lu (MLR Radiomics-Clinical P2-T2) (2022) Lu (MLR Radiomics-Clinical P2-T2) (2022) Subgroup Radiomics-Clinical P2-T2) (2022) Ayyad (SVM T2WI-DWI-ADC P2-T2) (2022) Ayyad (SVM T2WI-DWI-ADC P2-T2) (2022) Ayyad (D1 T2WI-DWI-ADC P2-T2) (2022) Ayyad (D1 T2WI-DWI-ADC P2-T2) (2022) Ayyad (LDA T2WI-DWI-ADC P2-T2) (2022) Ayyad (LDA T2WI-DWI-ADC P2-T2) (2022) Ayyad (LDA T2WI-DWI-ADC P2-T2) (2022)	0.764 0.855 0.999 0.860 0.999 0.949 0.872 0.800 0.797 0.712 0.860 0.797 0.358 0.820 0.800 0.920 0.800 0.920 0.800 0.920 0.800 0.920 0.800 0.920 0.800 0.920 0.800 0.920 0.800 0.920 0.800 0.920 0.800 0.920 0.800 0.920 0.800 0.920 0.800 0.920 0.800 0.920 0.800 0.920 0.800 0.920 0.800 0.920 0.800 0.920 0.955 0.920 0.955 0.920 0.955 0.920 0.955 0.920 0.955 0.920 0.955 0.920 0.955 0.920 0.955 0.920 0.955 0.920 0.955 0.920 0.955 0.920 0.955 0.920 0.950 0.9200 0.9200 0.9200 0.9200 0.9200 0.9200 0.9200 0.9200 0	(0.720, (0.917, (0.907, (0.907, (0.907, (0.967, (0.935, (0.718, (0.718, (0.718, (0.718, (0.715, (0.630, (0.715, (0.830, (0.716, (0.766, (0.738, (0.766, (0.738, (0.309, (0.844, (0.801, (0.810, (0.810, (0.857, (0.844, (0.801, (0.810, (0.844, (0.801, (0.810, (0.844, (0.801, (0.810, (0.844, (0.801, (0.810, (0.810, (0.810, (0.810, (0.810, (0.810, (0.810, (0.810, (0.810, (0.611, (0.611, (0.645, (0.631, (0.645, (0.611, (0.611, (0.645, (0.611	0.808) 0.918) 1.081) 1.081) 1.071) 1.031) 1.031) 0.909) 0.802) 0.802) 0.886) 0.886) 0.879) 0.941) 0.941) 0.942) 0.920) 0.902) 1.0021 0.920) 0.902) 1.019) 0.871) 0.939) 0.8391 0.920) 0.920]	
Subgroup ADC (I ^A 2=81.36 % , P=0.000) He (MLR T2WI-ADC PZ-TZ) (2021) Chen (MLR T2WI-ADC PZ-TZ) (2019) Ji (MLR T2WI-ADC PZ-TZ) (2019) Wu (MLR T2WI-ADC PZ-TZ) (2019) Wu (MLR T2WI-ADC TZ) (2019) Wu (MLR T2WI-ADC TZ) (2019) Woznicki (MLR T2WI-ADC PZ-TZ) (2020) Woznicki (SWT T2WI-ADC PZ-TZ) (2020) Woznicki (SWT T2WI-ADC PZ-TZ) (2020) Woznicki (SWT T2WI-ADC PZ-TZ) (2020) Woznicki (SWT T2WI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Subgroup T2WI-ADC (PZ-TZ) (2022) Ayyad (SWI Radiomics-Clinical PZ-TZ) (2022) Ayyad (SWI Radiomics-Clinical PZ-TZ) (2022) Ayyad (CNR Radiomics-Clinical PZ-TZ) (2022) Ayyad (CNR Radiomics-Clinical PZ-TZ) (2022) Ayyad (LDR Radiomics-Clinical PZ-TZ) (2022) U (MLR Radiomics-Clinical PZ-TZ) (2022) Ayyad (KT T2WI-DWI-ADC PZ-TZ) (2022) Ayyad (KT T2WI-DWI-ADC PZ-TZ) (2022) Ayyad (KT T2WI-DWI-ADC PZ-TZ) (2022) Ayyad (LDA T2WI-DWI-ADC PZ-TZ) (2022) Ayyad (LDA T2WI-DWI-ADC PZ-TZ) (2022) Ayyad (LDA T2WI-DWI-ADC PZ-TZ) (2022) I (LDA T2WI-DWI-ADC PZ-TZ) (2022) I (LDA T2WI-DWI-ADC PZ-TZ) (2022) I (LDA T2WI-DWI-ADC PZ-TZ) (2022) I (MLR RadiomEX-REINICAL PZ-TZ) (2022) Ayyad (LDA T2WI-DWI-ADC PZ-TZ) (2022) Ayyad (LDA T2WI-DWI-ADC PZ-TZ) (2022) I (MLR RadiomEX-REINICAL PZ-TZ) (2022) Ayyad (LDA T2WI-DWI-ADC PZ-TZ) (2022) I (MCR RadioREX PZ-TZ) (2022) Ayyad (LDA T2WI-DWI-ADC PZ-TZ) (2022) I (MCR RadioREX PZ-TZ) (2022) I (MLR RAdIOREX PZ-TZ) (2022) I (MLR RADC PZ-TZ) (2022) Ayyad (LDA T2WI-DWI-ADC PZ-TZ) (2022) Ayyad (LDA T2WI-DWI-ADC PZ-TZ) (2022) I (MCR RadioREX PZ-TZ) (2022) I (MCR RAdIOREX PZ-TZ) (2023) I (MCR RADIOREX PZ-TZ) (2023) I (MCR RADIOREX PZ-TZ) (2023)	0.764 0.855 0.989 0.846 0.872 0.800 0.797 0.712 0.800 0.797 0.712 0.800 0.797 0.742 0.800 0.900 0.804 0.920 0.844 0.937 0.845 0.388 0.320 0.844 0.937 0.845 0.365 0.846 0.937 0.846 0.757 0.846 0.777 0.846 0.777 0.846 0.777 0.846 0.777 0.7810 0.760 0.683 0.777 0.7810 0.763 0.777 0.777 0.785 0.777	(0.720, (0.917, (0.904, (0.907, (0.967, (0.967, (0.935, (0.718, (0.718, (0.718, (0.725, (0.715, (0.630, (0.715, (0.630, (0.715, (0.630, (0.76, (0.76, (0.756, (0.736, (0.736, (0.338, (0.726, (0.810, (0.937, (0.844, (0.907, (0.944, (0.699, (0.677, (0.663, (0.663, (0.663), (0.663, (0.663), (0.661), (0.663, (0.661), (0.661), (0.663, (0.661), (0.661), (0.661), (0.663, (0.661), (0.661	0.808) 0.918) 1.081) 1.081) 1.071) 1.031) 0.909) 0.882) 0.882) 0.886) 0.879) 0.886) 0.879) 0.941 0.940) 0.902) 1.002) 1.002) 1.0020 0.902) 1.0020 0.9021 0.9020 0.9020	
Subgroup ADC (I ^A 2=81.36 % , P=0.000) He (MLR T2WI-ADC PZ-TZ) (2021) Chen (MLR T2WI-ADC PZ-TZ) (2019) Ji (MLR T2WI-ADC PZ-TZ) (2019) Wu (MLR T2WI-ADC PZ-TZ) (2019) Wu (MLR T2WI-ADC TZ) (2019) Uu (MLR T2WI-ADC TZ) (2019) Woznicki (MLR T2WI-ADC PZ-TZ) (2020) Woznicki (SWT T2WI-ADC PZ-TZ) (2020) Woznicki (CNT T2WI-ADC PZ-TZ) (2020) Subgroup T2WI-ADC (I ^A 2=78.36 % , P=0.000) Han (MLR Radiomics-Clinical PZ-TZ) (2022) Ayyad (SW Radiomics-Clinical PZ-TZ) (2022) Ayyad (IC Radiomics-Clinical PZ-TZ) (2022) Hu (MLR Radiomics-Clinical PZ-TZ) (2022) Hu (MLR Radiomics-Clinical PZ-TZ) (2022) Hu (MLR Radiomics-Clinical PZ-TZ) (2022) Uu (MLR Radiomics-Clinical PZ-TZ) (2022) Gui (MLR Radiomics-Clinical PZ-TZ) (2022) Ayyad (DT TZWI-DWI-ADC PZ-TZ) (2022) Ayyad (DT TZWI-DWI-ADC PZ-TZ) (2022) Ayyad (DT TZWI-DWI-ADC PZ-TZ) (2022) II (JUL T2WI-DWI-ADC PZ-TZ) (2022) II (JUL T2WI-DWI-ADC PZ-TZ) (2022) Jin (SVM TZWI-DWI-ADC PZ-TZ) (2022) Jin (SVM TZWI-DWI-ADC PZ-TZ) (2023) Aussavavirojekul (NB TZWI-DWI-ADC PZ-TZ) (2023)	0.764 0.855 0.999 0.886 0.899 0.499 0.372 0.800 0.797 0.712 0.860 0.912 0.822 0.858 0.322 0.820 0.920 0.804 0.920 0.844 0.900 0.848 0.849 0.820 0.844 0.820 0.820 0.820 0.845 0.820 0.820 0.845 0.820 0.820 0.845 0.820 0.839 0.845 0.820 0.839 0.845 0.820 0.845 0.820 0.845 0.845 0.845 0.820 0.820 0.825 0.845 0.820 0.827 0.727 0.745 0.750 0.550	(0.720, (0.792, (0.917, (0.901, (0.901, (0.967, (0.835, (0.717, (0.722, (0.715, (0.730, (0.813, (0.813, (0.814, (0.900, (0.776, (0.756, (0.736, (0.738, (0.938, (0.938, (0.938, (0.938, (0.936, (0.810, (0.661	0.908) 0.918) 1.081) 0.968) 1.071) 1.031) 0.909) 0.802) 0.820 0.820 0.820 0.820 0.820 0.820 0.820 0.820 0.920 1.002) 0.920 1.0021 0.920 1.0191) 0.920 0.840) 0.920 0.840 0.920 0.840 0.920 0.840 0.920 0.840 0.920 0.840 0.920 0.840 0.920 0.840 0.920 0.840 0.920 0.840 0.920 0.931 0.920 0.931 0.920 0.931 0.9300 0.9300 0.9300 0.9300	
Subgroup ADC (I/2=81.36 % , P=0.000) He (MLR T2WI-ADC P2-T2) (2021) Chen (MLR T2WI-ADC P2-T2) (2019) JJ (MLR T2WI-ADC P2-T2) (2019) Wu (SVM T2WI-ADC P2 (2019) Wu (SVM T2WI-ADC T2) (2019) Wu (SVM T2WI-ADC T2) (2020) Woznicki (MLR T2WI-ADC P2-T2) (2020) Woznicki (SM T2WI-ADC P2-T2) (2020) Woznicki (GN T2WI-ADC P2-T2) (2020) Subgroup T2WI-ADC P2-T2) (2020) Ayyad (SVM Radiomics-Clinical P2-T2) (2022) Ayyad (SVM Radiomics-Clinical P2-T2) (2022) Ayyad (KR Radiomics-Clinical P2-T2) (2022) Ayyad (LDA Radiomics-Clinical P2-T2) (2022) Ayyad (LDA Radiomics-Clinical P2-T2) (2022) Gui (MLR Radiomics-Clinical P2-T2) (2022) Ayyad (SVM T2WI-DWI-ADC P2-T2) (2022) Ayyad (D1 T2WI-DWI-ADC P2-T2) (2022) Ayyad (D1 T2WI-DWI-ADC P2-T2) (2022) Jin (SVM T2WI-DWI-ADC P2-T2) (2022) Jin (SVM T2WI-DWI-ADC P2-T2) (2023) Aussavavirojekul (NB T2WI-DWI-ADC P2-T2) (2022) Aussavavirojekul (NB T2WI-DWI-ADC P2-T2) (2022)	0.764 0.855 0.999 0.490 0.872 0.800 0.797 0.712 0.800 0.797 0.712 0.800 0.800 0.800 0.800 0.430 0.457 0.450 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.760 0.765 0.767 0.765 0.763 0.576 0.576 0.576 0.576 0.576 0.576 0.576 0.576 0.576 0.5763 0.5760 0.576	(0.720, (0.917, (0.907, (0.907, (0.907, (0.967, (0.935, (0.718, (0.718, (0.718, (0.718, (0.715, (0.630, (0.715, (0.630, (0.716, (0.766, (0.766, (0.756, (0.776, (0.761, (0.901	0.808) 0.918) 1.081) 1.081) 1.071) 1.031) 1.031) 0.909) 0.802) 0.802) 0.802) 0.882) 0.886) 0.879) 0.941) 0.941) 0.940) 0.942) 0.920) 0.920) 0.9202) 1.002) 0.9203 0.9213 0.9203 0.9203 0.9213 0.9203 0.8453 0.9203 0.9203 0.8453 0.9203 0.9203 0.9203 0.8453 0.9203 0.8453 0.9203 0.8453 0.9203 0.8423 0.920	
Subgroup ADC (I ^A 2=81.36 % , P=0.000) He (MLR T2WI-ADC PZ-TZ) (2021) Chen (MLR T2WI-ADC PZ-TZ) (2019) Ji (MLR T2WI-ADC PZ-TZ) (2019) Wu (MLR T2WI-ADC TZ) (2019) Wu (MLR T2WI-ADC TZ) (2019) Wu (MLR T2WI-ADC TZ) (2020) Woznicki (FWI T2WI-ADC PZ-TZ) (2020) Woznicki (SWI T2WI-ADC PZ-TZ) (2020) Woznicki (SWI T2WI-ADC PZ-TZ) (2020) Woznicki (SWI T2WI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Woznicki (CNN T2WI-ADC PZ-TZ) (2020) Subgroup T2WI-ADC (PZ-R38 % , P=0.000) Han (MLR Radiomics-Clinical PZ-TZ) (2022) Ayyad (SVI Radiomics-Clinical PZ-TZ) (2022) Ayyad (CNR Radiomics-Clinical PZ-TZ) (2022) Ayyad (CNR Radiomics-Clinical PZ-TZ) (2022) Ayyad (CNR Radiomics-Clinical PZ-TZ) (2022) Hu (MLR Radiomics-Clinical PZ-TZ) (2022) U (MLR Radiomics-Clinical PZ-TZ) (2022) Gui (MLR Radiomics-Clinical PZ-TZ) (2022) Gui (MLR Radiomics-Clinical PZ-TZ) (2022) U (MLR Radiomics-Clinical PZ-TZ) (2022) U (MLR Radiomics-Clinical PZ-TZ) (2022) Subgroup Radiomics-Clinical PZ-TZ) (2022) Ayyad (CNT T2WI-DWI-ADC PZ-TZ) (2022) Ayyad (CNT T2WI-DWI-ADC PZ-TZ) (2022) Ayyad (LA T2WI-DWI-ADC PZ-TZ) (2022) Ayyad (LA T2WI-DWI-ADC PZ-TZ) (2022) Ayyad (LA T2WI-DWI-ADC PZ-TZ) (2022) I (LAD T2WI-DWI-ADC PZ-TZ) (2022) Ju (SWI T2WI-DWI-ADC PZ-TZ) (2022) Ayyad (LA T2WI-DWI-ADC PZ-TZ) (2022) Ayyad (LA T2WI-DWI-ADC PZ-TZ) (2022) Ju (SWI T2WI-DWI-ADC PZ-TZ) (2022) Ju (SWI T2WI-DWI-ADC PZ-TZ) (2022) Aussavavirojekul (MB T2WI-DWI-ADC PZ-TZ) (2022) Aussavavirojekul (ME TZWI-DWI-ADC PZ-TZ) (2022) Aussavavirojekul (ME TZWI-DWI-ADC PZ-TZ) (2022) Aussavavirojekul (ME TZWI-DWI-ADC PZ-TZ) (2022)	0.764 0.855 0.989 0.846 0.872 0.800 0.797 0.812 0.800 0.797 0.812 0.800 0.900 0.804 0.920 0.844 0.937 0.842 0.938 0.846 0.337 0.347 0.846 0.337 0.846 0.337 0.846 0.337 0.856 0.357 0.846 0.337 0.846 0.337 0.846 0.337 0.856 0.357 0.856 0.337 0.3577 0.3577 0.3577 0.3577 0.3577 0.3577 0.3577 0.35777	(0.720, (0.92, (0.917, (0.804, (0.907, (0.867, (0.835, (0.718, (0.718, (0.718, (0.718, (0.725, (0.715, (0.630, (0.715, (0.630, (0.715, (0.630, (0.76, (0.76, (0.756, (0.736, (0.338, (0.726, (0.807, (0.810, (0.810, (0.855, (0.807, (0.641, (0.663, (0.641, (0.808) 0.918) 1.081) 1.081) 1.031) 1.031) 0.969 0.862) 0.802) 0.886) 0.879 0.886) 0.879 0.940 0.940 0.940 0.940 0.940 0.940 0.920 1.002 1.002 0.871 0.920 0.902 1.019 0.920 0.902 1.019 0.920 0.902 1.019 0.920 0.902 1.019 0.920 0.845	
Subgroup ADC (I ^A 2=81.36 % , P=0.000) He (MLR T2WI-ADC PZ-T2) (2021) Chen (MLR T2WI-ADC PZ-T2) (2019) Ji (MLR T2WI-ADC PZ-T2) (2019) Wu (MLR T2WI-ADC PZ-T2) (2019) Wu (MLR T2WI-ADC TZ) (2019) Uu (MLR T2WI-ADC TZ) (2022) Woznicki (MLR T2WI-ADC PZ-T2) (2020) Woznicki (SWT T2WI-ADC PZ-T2) (2020) Woznicki (CNN T2WI-ADC PZ-T2) (2020) Subgroup T2WI-ADC (I ^A 2=78.36 % , P=0.000) Han (MLR Radiomics-Clinical PZ-T2) (2022) Ayyad (VM Radiomics-Clinical PZ-T2) (2022) Ayyad (UR Radiomics-Clinical PZ-T2) (2022) Hu (MLR Radiomics-Clinical PZ-T2) (2022) Hu (MLR Radiomics-Clinical PZ-T2) (2022) Uu (MLR Radiomics-Clinical PZ-T2) (2022) Gui (MLR Radiomics-Clinical PZ-T2) (2022) Subgroup Radiomics-Clinical PZ-T2) (2022) Ayyad (DT T2WI-DWI-ADC PZ-T2) (2022) Ayyad (DT T2WI-DWI-ADC PZ-T2) (2022) Ayyad (DT T2WI-DWI-ADC PZ-T2) (2022) Ii (JUD T2WI-DWI-ADC PZ-T2) (2022) Jin (SVM T2WI-DWI-ADC PZ-T2) (2022) Jin (SVM T2WI-DWI-ADC PZ-T2) (2022) Jin (SVM T2WI-DWI-ADC PZ-T2) (2022) Aussavavirojekul (KB T2WI-DWI-ADC PZ-T2) (2023) Aussavavirojekul (KB T2WI-DWI-ADC PZ-T2) (2023) Aussavavirojekul (KB T2WI-DWI-ADC PZ-T2) (2023) Aussavavirojekul (KB T2WI-DWI-ADC PZ-T2) (2023) Aussava	0.764 0.855 0.999 0.860 0.899 0.800 0.797 0.712 0.800 0.797 0.712 0.802 0.804 0.900 0.820 0.820 0.820 0.820 0.820 0.844 0.900 0.844 0.900 0.845 0.866 0.781 0.781 0.760 0.820 0.846 0.900 0.846 0.900 0.846 0.900 0.846 0.900 0.846 0.900 0.846 0.900 0.846 0.900 0.846 0.855 0.858 0.820 0.840 0.820 0.840 0.820 0.840 0.820 0.840 0.820 0.840 0.820 0.840 0.820 0.840 0.820 0.840 0.840 0.820 0.840 0.840 0.820 0.840 0.820 0.840 0.900 0.844 0.900 0.937 0.846 0.846 0.835 0.846 0.840 0.820 0.840 0.840 0.820 0.840 0.840 0.840 0.840 0.840 0.820 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.820 0.840 0.727 0.945 0.750 0.	(0.720, (0.792, (0.917, (0.804, (0.907, (0.867, (0.835, (0.717, (0.717, (0.722, (0.715, (0.630, (0.716, (0.756, (0.736, (0.736, (0.338, (0.236, (0.338, (0.236, (0.810, (0.641, (0.641, (0.648, (0.678, (0.641, (0.678, (0.634, (0.641, (0.641, (0.678, (0.641, (0.661	0.909) 0.918) 1.081) 0.968) 1.071) 1.031) 0.909) 0.882) 0.882) 0.882) 0.882) 0.887) 0.794) 0.902) 0.964) 0.902) 1.002) 0.974) 0.902) 1.002) 0.887) 0.902) 1.002) 0.889) 0.902) 1.002) 0.885) 0.852) 0.852) 0.852] 0.855]	

Li (MLR T2WI-DWI-ADC TZ) (2021) 0.926 (0.844, 1.008) Subgroup T2WI-DWI-ADC (I^2=89.5 % , P=0.000) 0.791 (0.718, 0.865) Jin (SVM DWI PZ-TZ) (2023) Hu (MLR DWI PZ-TZ) (2021) 0.598 (0.516, 0.680) 0.890 (0.784, 0.996) Subgroup DWI (I^2=94.51 % , P=0.000) 0.742 (0.456, 1.028) Gui (MLR T2WI-DWI PZ-TZ) (2022) 0.840 (0.720, 0.960) 0.840 (0.720, 0.960) Subgroup T2WI-DWI (I^2=NA , P=NA) Overall (I^2=86.71 % , P=0.000) 0.793 (0.768, 0.818) 0.5 0.6

Рис. 4. Блобограмма отдельных прогностических моделей для объединённой площади под кривой (ROC-AUC) и 95% доверительный интервал характеристики рака предстательной железы. Горизонтальные линии представляют 95% доверительный интервал точечных оценок. Каждый сплошной прямоугольник представляет значение ROC-AUC отдельных моделей, а размер прямоугольника указывает на вес исследования. Ромб означает объединённое значение ROC-AUC всех 73 моделей в 21 исследовании. Пунктирная линия обозначает среднее значение ROC-AUC. TZ — переходная зона; PZ — периферическая зона, PZ-TZ 0151 периферическая и переходная зоны. T2WI — T2-взвешенные изображения, DWI — диффузионно-взвешенные изображения, ADC — измеряемые коэффициенты диффузии.

0.7

0.8

0.9

Исключение сильно коррелированных переменных также полезно для уменьшения размерности модели. Вместо того, чтобы включать в модель обе переменные, следует выбрать одну, которая больше воздействует на исход, и отбросить другую.

В разрезе по проведению проверки переменных на мультиколлинеарность при построении прогностической модели значения ROC-AUC существенно различались:

NO Test Multi-collinearity: 0,828 [95%CI 0,791-0,864], *l*²=85,32%, *p* <0,001;

Test Multi-collinearity: 0,762 [95%CI 0,729-0,795], *I*²=86,64%, *p* <0,001.

Отбор наиболее значимо влияющих на исход переменных (снижение размерности).

Значения ROC-AUC при построении модели с отбором таких переменных и без него значительно не различались:

Feature processing: 0,790 [95%Cl 0,756-0,823], *l*²=88,12%, *p* <0,001;

NO Feature processing: 0,798 [95%CI 0,768-0,837], l^2 =84,58%, p <0,001.

Использование тестовой выборки. Было отмечено, что точность моделей, проверенных на тестовых выборках, несколько ниже, чем у тех моделей, которые не проверялись на тестовой выборке:

Test set: 0,782 [95%CI 0,751–0,812], *I*²=86,95%, *p* <0,001;

NO Test set: 0,812 [95%CI 0,768–0,856], l²=86,5%, *p* <0,001.

4. Кросс-валидация. В нашем метаанализе не обнаружена значимая разница в точности построенных моделей на основании ROC-AUC:

Cross-validation: 0,771 [95%CI 0,745-0,796], l²=80,43%, *p* <0.001;

NO Cross-validation: 0,833 [95%CI 0,779-0,887], *l*²=90,94%, *p* <0,001.

ОБСУЖДЕНИЕ

Целью данного систематического обзора была оценка качества прогностических моделей, построенных для выявления РПЖ при первичном обращении.

В представленном метаанализе МО в сочетании с радиомикой показаны многообещающие результаты для выявления РПЖ с совокупной ROC-AUC 0,793 [95%СІ 0,768-0,818]. В силу того, что между исследованиями существовала высокая неоднородность (*I*²=86,71%, p <0,001), было принято решение провести анализ в подгруппах для выявления источников этой неоднородности. Из-за высокой гетерогенности результатов во всех объединённых анализах использовалась модель случайных эффектов. Самое высокое значение ROC-AUC, 1,000 было получено в исследовании [33], а самое низкое — ROC-AUC, 0,500 [34].

Полученный нами результат (ROC-AUC, 0,793) согласуется с эффективностью PI-RADS, который имеет хорошую чувствительность, но более низкую специфичность, с ROC-AUC 0,779 и 0,797, о которых сообщают Р. Woźnicki и соавт. [16] и, в последнее время, J.-G. Zhong и соавт. [22], и является значительно лучше результатов прогнозирования на основе клинических данных: PSAD — 0,623 [27], возраста — 0,69 [38] или объёма простаты — 0,68 [39]. При этом наш анализ показал, что добавление клинических данных к результатам радиомики может повысить качество модели: 0,869 [95%Cl 0,844-0,895], I²=22,71%, p=0,227, по сравнению с исключительно радиомическими характеристиками: 0,779 [95%Cl 0,751-0,807], *l*²=87,38%, *p* <0,001. Кроме того, было определено, что если использовать только радиомику, то прогностические модели получаются качественнее, если при их построении участвуют данные следующих протоколов T2WI+ADC: 0,860 [95%CI 0,813-0,907], *I*²=78,36%, *p* <0,001.

При рассмотрении прогностических моделей в зависимости от алгоритма МО их построения, выяснилось, что модели, построенные на основе алгоритма нейросетей CNN, оказались наиболее точными и показали наилучшие результаты (0,856 [95%СІ 0,574-1,138]). Однако модели, построенные на основе CNN, оказались нестабильными в своей работе и наиболее гетерогенными (*l*²=95,75%, *p* <0,001). На втором месте шли модели, построенные на основе алгоритма MLR (0,852 [95%СІ 0,822-0,883], /²=80,89%, р <0,001). Они показывают более стабильную работу (/²=80,89% против l^2 =95,75% у CNN). Следует также отметить, что модели, построенные на основе CNN, являются «чёрными ящиками» и не поддаются интерпретации. Модель же, построенная на основе MLR, является открытой и легко интерпретируемой.

Анализ подгрупп также показал, что качество прогностической модели значительно не возрастает, если модель строится для одной конкретной зоны простаты или независимо от зоны простаты: PZ-TZ: 0,797 [95%Cl 0,763–0,831], l²=88,12%, p <0,001; PZ: 0,789 [95%CI 0,637– 0,942], *l*²=90,3%, *p* <0,001; TZ: 0,786 [95%CI 0,749–0,823], *l*²=82,45%, *p* <0,001.

Кроме того, интересным представляется анализ процесса построения прогностических моделей. Было изучено использование авторами публикаций следующих приёмов.

1. Проверка признаков на мультиколлинеарность. ROC-AUC значительно различались в зависимости от наличия/отсутствия проверки на мультиколлинеарность: NO Test Multi-collinearity — 0,828 [95%CI 0,791; 0,864], *I*²=85,32%, *p* <0,001; Test Multi-collinearity — 0,762 [95%CI 0,729; 0,795], *I*²=86,64%, *p* <0,001. Обычно не делают проверку на мультиколлинеарность при построении прогностической модели, которая в большей степени предназначена для предсказания результата, чем для описания изучаемого явления. В ходе проведённого метаанализа нами было получено подтверждение изложенного выше

тезиса: модели, построенные без проведения проверки на мультиколлинеарность, имели более высокую точность предсказания.

2. Отбор наиболее значимо влияющих на исход переменных (снижение размерности). В отличие от использования всех имеющихся переменных при построении прогностической модели, кроме снижения времени построения модели и времени работы прогностической модели при её использовании, удаление незначимых или малозначимо влияющих на исход переменных позволяет решить такую проблему, возникающую при работе с многомерными данными, как «проклятие размерности». Эта проблема возникает с наборами данных с большим количеством переменных при малом количестве наблюдений (пациентов).

Проведённый метаанализ не показал значимую разницу при оценке ROC-AUC при построении моделей с использованием или без использования снижения размерности. Возможно, это связано с тем, что в тех публикациях, в которых не описано проведения снижения размерности, эта процедура была проведена исследователями, но не описана в статье.

3. Использование тестовой выборки при построении прогностической модели важно, т.к. это предоставляет возможность проверить построенную модель на данных, на которых модель не обучалась, что даёт некоторую уверенность, что модель правильно уловила имеющиеся у описываемого явления закономерности, а не просто заучила имеющие закономерности в обучающей выборке.

Проведённое исследование показало, что 62% (45/73) рассмотренных нами моделей проверены на тестовой выборке. Точность моделей, проверенных на тестовых выборках, была несколько ниже, чем тех моделей, которые не проверяли на тестовой выборке: Test set — 0,782 [95%CI 0,751–0,812], l^2 =86,95%, p <0,001; NO Test set — 0,812 [95%CI 0,768–0,856], l^2 =86,5%, p <0,001.

4. Кросс-валидация. Мы проверили прогностические модели на наличие проведения исследователями процедуры кросс-валидации (cross-validation). Кроссвалидация проводится для выбора наиболее оптимальных моделей на основании подбора гиперпараметров для повышения точности модели. В нашем ситематическом обзоре с метаанализом не была отмечена значимая разница в точности построенных моделей на основании ROC-AUC: Cross-validation — 0,771 [95%CI 0,745–0,796], I²=80,43%, p <0,001; NO Cross-validation — 0,833 [95%CI 0,779–0,887], I²=90,94%, p <0,001.

Проведённое нами исследование показало, что фактически существует широкий спектр первичных исследований, направленных на построение прогностической модели на основе бпМРТ и МО для диагностики РПЖ. Однако нам не удалось найти соответствующие метаанализы, посвящённые заявленной цели нашего исследования. При этом последний систематический обзор по нашему исследованию был проведён в 2021 г. [11].

Ограничения исследования

Данный систематический обзор имеет ряд ограничений. Прежде всего, критериям отбора соответствовало относительно небольшое количество исследований. Частично это связано с несоответствием заголовка статьи и её наполнением. Мы также обнаружили высокую гетерогенность, общую проблему с другими метаанализами MPT простаты и точности диагностических тестов в целом [40, 41]. Несмотря на это, общее качество прогностических моделей в отобранных исследованиях было достаточным для метаанализа.

ЗАКЛЮЧЕНИЕ

Представленный систематический обзор с метаанализом показал многообещающие результаты количественной идентификации РПЖ на основе МО по данным радиомического анализа данных бпМРТ. Несмотря на разнообразие подходов, которые использовали авторы, результаты демонстрируют сопоставимую точность при сравнении подхода ML и традиционной оценки PI-RADS. Однако к этим доказательствам следует относиться с должной осторожностью, поскольку многоцентровые исследования прогностических моделей, обеспечивающие прямое сравнение между эффективностью алгоритмов МО и эффективностью рентгенологов, всё ещё отсутствуют. Тем не менее, современные подходы с использованием искусственного интеллекта могут улучшить точность обнаружения РПЖ и воспроизводимость методики в клинической практике.

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Источник финансирования. Авторы заявляют об отсутствии внешнего финансирования при проведении исследования.

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

Вклад авторов. Все авторы подтверждают соответствие своего авторства международным критериям ICMJE (все авторы внесли вклад в разработку концепции, проведение поисково-аналитической работы и подготовку статьи, прочли и одобрили финальную версию перед публикацией). Наибольший вклад распределён следующим образом: О.В. Крючкова — концепция и дизайн исследования, написание текста статьи, редактирование текста рукописи, утверждение итогового варианта текста рукописи; Е.В. Щепкина — написание текста статьи, анализ полученных данных; С.В. Епифанова — редактирование текста рукописи; Е.В. Заря — сбор и обработка материалов; Н.А. Рубцова — консультативная поддержка, утверждение итогового варианта текста рукописи; Б.Я. Алексеев, А.Э. Талышинский — утверждение итогового варианта текста рукописи.

ADDITIONAL INFORMATION

Funding source. This article was not supported by any external sources of funding.

Competing interests. The authors declare that they have no conflicts of interests.

Authors' contribution. All authors made a substantial contribution to the conception of the work, acquisition, analysis, interpretation of data for the work, drafting and revising the work, final approval of the version

СПИСОК ЛИТЕРАТУРЫ

1. Mottet N., van den Bergh R.C.N., Briers E., et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer–2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent // European Urology. 2021. Vol. 79, N 2. P. 243–262. doi: 10.1016/j.eururo.2020.09.042

2. Здравоохранение в России. 2021 : статистический сборник. Москва : Росстат, 2021.

3. Verma S., Rajesh A. A Clinically Relevant Approach to Imaging Prostate Cancer: review // American Journal of Roentgenology. 2011. Vol. 196, Suppl. 3. P. S1–10 Quiz S11–4. doi: 10.2214/AJR.09.7196

4. Girometti R., Giannarini G., Panebianco V., et al. Comparison of different thresholds of PSA density for risk stratification of PI-RADSv2.1 categories on prostate MRI // The British Journal of Radiology. 2022. Vol. 95, N 1131. P. 20210886. doi: 10.1259/bjr.20210886

5. Niaf E., Lartizien C., Bratan F., et al. Prostate Focal Peripheral Zone Lesions: Characterization at Multiparametric MR Imaging–Influence of a Computer-aided Diagnosis System // Radiology. 2014. Vol. 271, N 3. P. 761–769. doi: 10.1148/radiol.14130448

6. Drost F.-J.H., Osses D.F., Nieboer D., et al. Prostate MRI, with or without MRI-targeted biopsy, and systematic biopsy for detecting prostate cancer // Cochrane Database of Systematic Reviews. 2019. Vol. 4, N 4. P. CD012663. doi: 10.1002/14651858.CD012663.pub2

7. Goldenberg S.L., Nir G., Salcudean S.E. A new era: artificial intelligence and machine learning in prostate cancer // Nature Reviews Urology. 2019. Vol. 16, N 7. P. 391–403. doi: 10.1038/s41585-019-0193-3

8. Cuocolo R., Cipullo M.B., Stanzione A., et al. Machine learning applications in prostate cancer magnetic resonance imaging // European Radiology Experimental. 2019. Vol. 3, N 1. P. 35. doi: 10.1186/s41747-019-0109-2

9. Ghezzo S., Bezzi C., Presotto L., et al. State of the art of radiomic analysis in the clinical management of prostate cancer: A systematic review // Critical Reviews in Oncology/Hematology. 2022. Vol. 169. P. 103544. doi: 10.1016/j.critrevonc.2021.103544

10. Гележе П.Б., Блохин И.А., Семенов С.С., Caruso D. Радиомика магнитно-резонансной томографии при раке предстательной железы: что известно в настоящее время? // Digital Diagnostics. 2021. Т. 2, №4. С. 441–452. doi: 10.17816/DD70170

11. Ferro M., de Cobelli O., Vartolomei M.D., et al. Prostate Cancer Radiogenomics—From Imaging to Molecular Characterization // Inte rnational Journal of Molecular Sciences. 2021. Vol. 22, N 18. P. 9971. doi: 10.3390/ijms22189971

to be published and agree to be accountable for all aspects of the work. The largest contribution is distributed as follows: 0.V. Kryuchkova — concept and design of the study, writing and editing the manuscript, approval of the final version of the manuscript; E.V. Schepkina — writing the manuscript, statistical analysis; S.V. Epifanova — editing the manuscript; E.V. Zarya — collection and processing the data; N.A. Rubtsova — advisory support, approval of the final version of the manuscript; B.Ya. Alekseev, A.E. Talyshinskii — approval of the final version of the manuscript.

12. Steyerberg E.W., Vickers A.J., Cook N.R., et al. Assessing the Performance of Prediction Models // Epidemiology. 2010. Vol. 21, N 1. P. 128–138. doi: 10.1097/EDE.0b013e3181c30fb2

13. Higgins J.P.T., Green S., editors. The Cochrane Collaboration. Cochrane Handbook for Systematic Reviews of Interventions [Internet]. England : John Wiley & Sons Ltd. Дата обращения: 19.03.2020. Режим доступа: https://training.cochrane.org/handbook **14.** Higgins J.P.T., Thompson S.G., Deeks J.J., Altman D.G. Measuring inconsistency in meta-analyses // BMJ. 2003. Vol. 327, N 7414. P. 557–560. doi: 10.1136/bmj.327.7414.557

15. DerSimonian R., Laird N. Meta-analysis in clinical trials // Controlled Clinical Trials. 1986. Vol. 7, N 3. P. 177–188. doi: 10.1016/0197-2456(86)90046-2

16. Woźnicki P., Westhoff N., Huber T., et al. Multiparametric MRI for Prostate Cancer Characterization: Combined Use of Radiomics Model with PI-RADS and Clinical Parameters // Cancers (Basel). 2020. Vol. 12, N 7. P. 1767. doi: 10.3390/cancers12071767

17. Li M., Yang L., Yue Y., et al. Use of Radiomics to Improve Diagnostic Performance of PI-RADS v2.1 in Prostate Cancer // Frontiers in Oncology. 2021. Vol. 10. P. 631831. doi: 10.3389/fonc.2020.631831

18. Gui S., Lan M., Wang C., et al. Application Value of Radiomic Nomogram in the Differential Diagnosis of Prostate Cancer and Hyperplasia // Frontiers in Oncology. 2022. Vol. 12. P. 859625. doi: 10.3389/fonc.2022.859625

19. Lu Y., Li B., Huang H., et al. Biparametric MRI-based radiomics classifiers for the detection of prostate cancer in patients with PSA serum levels of 4~10 ng/mL // Frontiers in Oncology. 2022. Vol. 12. P. 1020317. doi: 10.3389/fonc.2022.1020317

20. Zhou B., Liu X., Gan H., et al. Differentiation of Prostate Cancer and Stromal Hyperplasia in the Transition Zone With Monoexponential, Stretched-Exponential Diffusion-Weighted Imaging and Diffusion Kurtosis Imaging in a Reduced Number of b Values: Correlation With Whole-Mount Pathology // Journal of Computer Assisted Tomography. 2022. Vol. 46, N 4. P. 545–550. doi: 10.1097/RCT.00000000001314

21. Wu M., Krishna S., Thornhill R.E., et al. Transition zone prostate cancer: Logistic regression and machine-learning models of quantitative ADC, shape and texture features are highly accurate for diagnosis // Journal of Magnetic Resonance Imaging. 2019. Vol. 50, N 3. P. 940–950. doi: 10.1002/jmri.26674

22. Zhong J.-G., Shi L., Liu J., et al. Predicting prostate cancer in men with PSA levels of 4–10 ng/mL: MRI-based radiomics can help junior radiologists improve the diagnostic

performance // Scientific reports. 2023. Vol. 13, N 1. P. 4846. doi: 10.1038/s41598-023-31869-1

23. Ou Y.C., Chang K.H., Tung M.C., et al. Building a Nomogram for Prediction of Prostate Cancer in Patients With Preoperatively Suspected Prostate Cancer // Anticancer Research. 2020. Vol. 40, N 5. P. 2995–3002. doi: 10.21873/anticanres.14280

24. McGarry S.D., Bukowy J.D., Iczkowski K.A., et al. Gleason Probability Maps: A Radiomics Tool for Mapping Prostate Cancer Likelihood in MRI Space // Tomography. 2019. Vol. 5, N 1. P. 127– 134. doi: 10.18383/j.tom.2018.00033

25. Hu L. Zhou D.W., Fu C.X., et al. Advanced zoomed diffusion-weighted imaging vs. full-field-of-view diffusion-weighted imaging in prostate cancer detection: a radiomic features study // European radiology. 2021. Vol. 31, N 3. P. 1760–1769. doi: 10.1007/s00330-020-07227-4

26. Ji X., Zhang J., Shi W., et al. Bi-parametric magnetic resonance imaging based radiomics for the identification of benign and malignant prostate lesions: cross-vendor validation // Physical and Engineering Sciences in Medicine. 2021. Vol. 44, N 3. P. 745–754. doi: 10.1007/s13246-021-01022-1

27. Jin P., Shen J., Yang L., et al. Machine learning-based radiomics model to predict benign and malignant PI-RADS v2.1 category 3 lesions: a retrospective multi-center study // BMC Medical Imaging. 2023. Vol. 23, N 1. P. 47. doi: 10.1186/s12880-023-01002-9

28. Li S., Zheng T., Fan Z., et al. A dynamic-static combination model based on radiomics features for prostate cancer using multiparametric MRI // Physics in Medicine & Biology. 2023. Vol. 68, N 1. P. 015008. doi: 10.1088/1361-6560/aca954

29. Ayyad S.M., Badawy M.A., Shehata M., et al. A New Framework for Precise Identification of Prostatic Adenocarcinoma // Sensors. 2022. Vol. 22, N 5. P. 1848. doi: 10.3390/s22051848

30. Han L., He G., Mei Y., et al. Combining Magnetic Resonance Diffusion-Weighted Imaging with Prostate-Specific Antigen to Differentiate Between Malignant and Benign Prostate Lesions // Medical Science Monitor. 2022. Vol. 28. P. e935307. doi: 10.12659/MSM.935307

31. Chen T., Li M., Gu Y., et al. Prostate Cancer Differentiation and Aggressiveness: Assessment With a Radiomic-Based Model vs. PI-RADS v2 // Journal of Magnetic Resonance Imaging. 2019. Vol. 49, N 3. P. 875–884. doi: 10.1002/jmri.26243

32. He D., Wang X., Fu C., et al. MRI-based radiomics models to assess prostate cancer, extracapsular extension and positive

REFERENCES

1. Mottet N, van den Bergh RCN, Briers E, et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer–2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. *European urology*. 2021;79(2):243–262. doi: 10.1016/j.eururo.2020.09.042

2. Zdravookhranenie v Rossii, 2021: statisticheskii sbornik. Moscow: Rosstat; 2021.

3. Verma S, Rajesh A. A Clinically Relevant Approach to Imaging Prostate Cancer: review. *American Journal of Roentgenology*. 2011;196(3 Suppl):S1–10 Quiz S11–4. doi: 10.2214/AJR.09.7196

4. Girometti R, Giannarini G, Panebianco V, et al. Comparison of different thresholds of PSA density for risk stratification of

surgical margins // Cancer Imaging. 2021. Vol. 21, N 1. P. 46. doi: 10.1186/s40644-021-00414-6

33. Jamshidi G., Abbasian Ardakani A., Ghafoori M., et al. Radiomics-based machine-learning method to diagnose prostate cancer using mp-MRI: a comparison between conventional and fused models // Magnetic Resonance Materials in Physics, Biology and Medicine. 2022. Vol. 36, N 1. P. 55–64. doi: 10.1007/s10334-022-01037-z

34. Aussavavirojekul P., Hoonlor A., Srinualnad S. Optimization of clinical risk-factor interpretation and radiological findings with machine learning for PIRADS category 3 patients // Prostate. 2022. Vol. 82, N 2. P. 235–244. doi: 10.1002/pros.24266

35. Giambelluca D., Cannella R., Vernuccio F., et al. PI-RADS 3 Lesions: Role of Prostate MRI Texture Analysis in the Identification of Prostate Cancer // Current Problems in Diagnostic Radiology. 2021. Vol. 50, N 2. P. 175–185. doi: 10.1067/j.cpradiol.2019.10.009

36. Viswanath S.E., Chirra P.V., Yim M.C., et al. Comparing radiomic classifiers and classifier ensembles for detection of peripheral zone prostate tumors on T2-weighted MRI: a multi-site study // BMC Medical Imaging. 2019. Vol. 19, N 1. P. 22. doi: 10.1186/s12880-019-0308-6

37. Chawla N.V., Bowyer K.W., Hall L.O., Kegelmeyer W.P. SMOTE: Synthetic Minority Over-sampling Technique // Journal of Artificial Intelligence Research. 2002. Vol. 16, N 1. P. 321–357.

38. Dai J.C., Morgan T.N., Goueli R., et al. MRI Features Associated with Histology of Benign Prostatic Hyperplasia Nodules: Generation of a Predictive Model // Journal of Endourology. 2022. Vol. 36, N 3. P. 381–386. doi: 10.1089/end.2021.0397

39. Liu J., Dong B., Qu W., et al. Using clinical parameters to predict prostate cancer and reduce the unnecessary biopsy among patients with PSA in the gray zone // Scientific reports. 2020. Vol. 10, N 1. P. 5157. doi: 10.1038/s41598-020-62015-w

40. Zhang L., Tang M., Chen S., et al. A meta-analysis of use of Prostate Imaging Reporting and Data System Version 2 (PI-RADS V2) with multiparametric MR imaging for the detection of prostate cancer // European radiology. 2017. Vol. 27, N 12. P. 5204–5214. doi: 10.1007/s00330-017-4843-7

41. Zhen L., Liu X., Yegang C., et al. Accuracy of multiparametric magnetic resonance imaging for diagnosing prostate Cancer: a systematic review and meta-analysis // BMC Cancer. 2019. Vol. 19, N 1. P. 1244. doi: 10.1186/s12885-019-6434-2

PI-RADSv2.1 categories on prostate MRI. *The British Journal of Radiology*. 2022;95(1131):20210886. doi: 10.1259/bjr.20210886 **5.** Niaf E, Lartizien C, Bratan F, et al. Prostate Focal Peripheral Zone Lesions: Characterization at Multiparametric MR Imaging–Influence of a Computer-aided Diagnosis System. *Radiology*. 2014;271(3):761–769. doi: 10.1148/radiol.14130448

6. Drost FJH, Osses DF, Nieboer D, et al. Prostate MRI, with or without MRI-targeted biopsy, and systematic biopsy for detecting prostate cancer. *Cochrane Database of Systematic Reviews*. 2019;4(4):CD012663. doi: 10.1002/14651858.CD012663.pub2

7. Goldenberg SL, Nir G, Salcudean SE. A new era: artificial intelligence and machine learning in prostate

cancer. *Nature Reviews Urology*. 2019;16(7):391-403. doi: 10.1038/s41585-019-0193-3

8. Cuocolo R, Cipullo MB, Stanzione A, et al. Machine learning applications in prostate cancer magnetic resonance imaging. *European Radiology Experimental*. 2019;3(1):35. doi: 10.1186/s41747-019-0109-2

9. Ghezzo S, Bezzi C, Presotto L, et al. State of the art of radiomic analysis in the clinical management of prostate cancer: A systematic review. *Critical Reviews in Oncology/Hematology*. 2022;169:103544. doi: 10.1016/j.critrevonc.2021.103544

10. Gelezhe PB, Blokhin IA, Semenov SS, Caruso D. Magnetic resonance imaging radiomics in prostate cancer radiology: what is currently known? *Digital Diagnostics*. 2021;2(4):441–452. doi: 10.17816/DD70170

11. Ferro M, de Cobelli O, Vartolomei MD, et al. Prostate Cancer Radiogenomics—From Imaging to Molecular Characterization. *International Journal of Molecular Sciences*. 2021;22(18):9971. doi: 10.3390/ijms22189971

12. Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the Performance of Prediction Models. *Epidemiology*. 2010;21(1):128–138. doi: 10.1097/EDE.0b013e3181c30fb2

13. Higgins JPT, Green S, editors. *The Cochrane Collaboration. Cochrane Handbook for Systematic Reviews of Interventions* [Internet]. England: John Wiley & Sons Ltd. [cited 19 Mar 2020]. Available from: https://training.cochrane.org/handbook

14. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. *BMJ*. 2003;327(7414):557–560. doi: 10.1136/bmj.327.7414.557

15. DerSimonian R, Laird N. Meta-analysis in clinical trials. *Controlled Clinical Trials*. 1986;7(3):177–188. doi: 10.1016/0197-2456(86)90046-2 **16.** Woźnicki P, Westhoff N, Huber T, et al. Multiparametric MRI for Prostate Cancer Characterization: Combined Use of Radiomics Model with PI-RADS and Clinical Parameters. *Cancers (Basel)*. 2020;12(7):1767. doi: 10.3390/cancers12071767

17. Li M, Yang L, Yue Y, et al. Use of Radiomics to Improve Diagnostic Performance of PI-RADS v2.1 in Prostate Cancer. *Frontiers in Oncology*. 2021;10:631831. doi: 10.3389/fonc.2020.631831

18. Gui S, Lan M, Wang C, et al. Application Value of Radiomic Nomogram in the Differential Diagnosis of Prostate Cancer and Hyperplasia. *Frontiers in Oncology*. 2022;12:859625. doi: 10.3389/fonc.2022.859625

19. Lu Y, Li B, Huang H, et al. Biparametric MRI-based radiomics classifiers for the detection of prostate cancer in patients with PSA serum levels of 4~10 ng/mL. *Frontiers in Oncology*. 2022;12:1020317. doi: 10.3389/fonc.2022.1020317

20. Zhou B, Liu X, Gan H, et al. Differentiation of Prostate Cancer and Stromal Hyperplasia in the Transition Zone With Monoexponential, Stretched-Exponential Diffusion-Weighted Imaging and Diffusion Kurtosis Imaging in a Reduced Number of b Values: Correlation With Whole-Mount Pathology. *Journal of Computer Assisted Tomography*. 2022;46(4):545–550. doi: 10.1097/RCT.00000000001314

21. Wu M, Krishna S, Thornhill RE, et al. Transition zone prostate cancer: Logistic regression and machine-learning models of quantitative ADC, shape and texture features are highly accurate for diagnosis. *Journal of Magnetic Resonance Imaging.* 2019;50(3):940–950. doi: 10.1002/jmri.26674

22. Zhong JG, Shi L, Liu J, et al. Predicting prostate cancer in men with PSA levels of 4–10 ng/mL: MRI-based radiomics can help junior radiologists improve the diagnostic performance // Scientific reports. 2023;13(1):4846. doi: 10.1038/s41598-023-31869-1

23. Ou YC, Chang KH, Tung MC, et al. Building a Nomogram for Prediction of Prostate Cancer in Patients With Preoperatively Suspected Prostate Cancer. *Anticancer Research*. 2020;40(5):2995–3002. doi: 10.21873/anticanres.14280

24. McGarry SD, Bukowy JD, Iczkowski KA, et al. Gleason Probability Maps: A Radiomics Tool for Mapping Prostate Cancer Likelihood in MRI Space. *Tomography*. 2019;5(1):127–134. doi: 10.18383/j.tom.2018.00033 **25.** Hu L, Zhou DW, Fu CX, et al. Advanced zoomed diffusion-weighted imaging vs. full-field-of-view diffusion-weighted imaging in prostate cancer detection: a radiomic features study. *European radiology*. 2021;31(3):1760–1769. doi: 10.1007/s00330-020-07227-4

26. Ji X, Zhang J, Shi W, et al. Bi-parametric magnetic resonance imaging based radiomics for the identification of benign and malignant prostate lesions: cross-vendor validation. *Physical and Engineering Sciences in Medicine*. 2021;44(3):745–754. doi: 10.1007/s13246-021-01022-1

27. Jin P, Shen J, Yang L, et al. Machine learning-based radiomics model to predict benign and malignant PI-RADS v2.1 category 3 lesions: a retrospective multi-center study. *BMC Medical Imaging*. 2023;23(1):47. doi: 10.1186/s12880-023-01002-9

28. Li S, Zheng T, Fan Z, et al. A dynamic-static combination model based on radiomics features for prostate cancer using multiparametric MRI. *Physics in Medicine & Biology*. 2023;68(1):015008. doi: 10.1088/1361-6560/aca954

29. Ayyad SM, Badawy MA, Shehata M, et al. A New Framework for Precise Identification of Prostatic Adenocarcinoma. *Sensors*. 2022;22(5):1848. doi: 10.3390/s22051848

30. Han L, He G, Mei Y, et al. Combining Magnetic Resonance Diffusion-Weighted Imaging with Prostate-Specific Antigen to Differentiate Between Malignant and Benign Prostate Lesions. *Medical Science Monitor*. 2022;28:e935307. doi: 10.12659/MSM.935307

31. Chen T, Li M, Gu Y, et al. Prostate Cancer Differentiation and Aggressiveness: Assessment With a Radiomic-Based Model vs. PI-RADS v2. *Journal of Magnetic Resonance Imaging*. 2019;49(3):875–884. doi: 10.1002/jmri.26243

32. He D, Wang X, Fu C, et al. MRI-based radiomics models to assess prostate cancer, extracapsular extension and positive surgical margins. *Cancer Imaging*. 2021;21(1):46. doi: 10.1186/s40644-021-00414-6

33. Jamshidi G, Abbasian Ardakani A, Ghafoori M, et al. Radiomics-based machine-learning method to diagnose prostate cancer using mp-MRI: a comparison between conventional and fused models. *Magnetic Resonance Materials in Physics, Biology and Medicine*. 2022;36(1):55–64. doi: 10.1007/s10334-022-01037-z

34. Aussavavirojekul P, Hoonlor A, Srinualnad S. Optimization of clinical risk-factor interpretation and radiological findings with machine learning for PIRADS category 3 patients. *Prostate*. 2022;82(2):235–244. doi: 10.1002/pros.24266

35. Giambelluca D, Cannella R, Vernuccio F, et al. PI-RADS 3 Lesions: Role of Prostate MRI Texture Analysis in the Identification of Prostate

Cancer. Current Problems in Diagnostic Radiology. 2021;50(2):175–185. doi: 10.1067/j.cpradiol.2019.10.009

36. Viswanath SE, Chirra PV, Yim MC, et al. Comparing radiomic classifiers and classifier ensembles for detection of peripheral zone prostate tumors on T2-weighted MRI: a multi-site study. *BMC Medical Imaging*. 2019;19(1):22. doi: 10.1186/s12880-019-0308-6

37. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: Synthetic Minority Over-sampling Technique. *Journal of Artificial Intelligence Research*. 2002;16(1):321–357.

38. Dai JC, Morgan TN, Goueli R, et al. MRI Features Associated with Histology of Benign Prostatic Hyperplasia Nodules: Generation of a Predictive Model. *Journal of Endourology*. 2022;36(3):381–386. doi: 10.1089/end.2021.0397

ОБ АВТОРАХ

* Щепкина Елена Викторовна, канд. социол. наук; адрес: Россия, 119571, Москва, пр-т Вернадского, д. 82, стр. 1; ORCID: 0000-0002-2079-1482; eLibrary SPIN: 2347-9436; e-mail: elenaschepkina@gmail.com

Крючкова Оксана Валентиновна, канд. мед. наук;

ORCID: 0000-0001-6483-2074; eLibrary SPIN: 2445-3370; e-mail: ovk16@bk.ru

Рубцова Наталья Алефтиновна, д-р мед. наук; ORCID: 0000-0001-8378-4338;

e-mail: rna17@yandex.ru

Алексеев Борис Яковлевич, д-р мед. наук; ORCID: 0000-0002-3398-4128; eLibrary SPIN: 4692-5705; e-mail: byalekseev@mail.ru

Кузнецов Антон Игоревич;

ORCID: 0000-0003-2182-5792; eLibrary SPIN: 8824-9080; e-mail: drednout5786@yandex.ru

Епифанова Светлана Викторовна, канд. мед. наук; ORCID: 0000-0002-7591-5120; eLibrary SPIN: 9067-5033; e-mail: svepifanova@yandex.ru

Заря Елена Владимировна;

ORCID: 0009-0001-4444-8881; eLibrary SPIN: 9800-8219; e-mail: zaryya@yandex.ru

Талышинский Али Эльманович, д-р мед. наук; ORCID: 0000-0002-3521-8937; eLibrary SPIN: 7747-0117; e-mail: ali-ma@mail.ru

* Автор, ответственный за переписку / Corresponding author

39. Liu J, Dong B, Qu W, et al. Using clinical parameters to predict prostate cancer and reduce the unnecessary biopsy among patients with PSA in the gray zone. *Scientific reports.* 2020;10(1):5157. doi: 10.1038/s41598-020-62015-w

40. Zhang L, Tang M, Chen S, et al. A meta-analysis of use of Prostate Imaging Reporting and Data System Version 2 (PI-RADS V2) with multiparametric MR imaging for the detection of prostate cancer. *European radiology*. 2017;27(12):5204–5214. doi: 10.1007/s00330-017-4843-7

41. Zhen L, Liu X, Yegang C, et al. Accuracy of multiparametric magnetic resonance imaging for diagnosing prostate Cancer: a systematic review and meta-analysis. *BMC Cancer*. 2019;19(1):1244. doi: 10.1186/s12885-019-6434-2

AUTHORS' INFO

* Elena V. Schepkina, Cand. Sci. (Sociology); address: 82 build. 1 Vernadsky avenue, 119571 Moscow, Russia; ORCID: 0000-0002-2079-1482; eLibrary SPIN: 2347-9436; e-mail: elenaschepkina@gmail.com

Oksana V. Kryuchkova, MD Cand. Sci. (Medicine); ORCID: 0000-0001-6483-2074; eLibrary SPIN: 2445-3370; e-mail: ovk16@bk.ru

Natalia A. Rubtsova, MD, Dr. Sci. (Medicine); ORCID: 0000-0001-8378-4338; eLibrary SPIN: 9712-9091; e-mail: rna17@yandex.ru

Boris Ya. Alekseev, MD, Dr. Sci. (Medicine); ORCID: 0000-0002-3398-4128; eLibrary SPIN: 4692-5705; e-mail: byalekseev@mail.ru

Anton I. Kuznetsov; ORCID: 0000-0003-2182-5792; eLibrary SPIN: 8824-9080; e-mail: drednout5786@yandex.ru

Svetlana V. Epifanova, MD, Cand. Sci. (Medicine); ORCID: 0000-0002-7591-5120; eLibrary SPIN: 9067-5033; e-mail: svepifanova@yandex.ru

Elena V. Zarya; ORCID: 0009-0001-4444-8881; eLibrary SPIN: 9800-8219; e-mail: zaryya@yandex.ru

Ali E. Talyshinskii, MD, Dr. Sci. (Medicine); ORCID: 0000-0002-3521-8937; eLibrary SPIN: 7747-0117; e-mail: ali-ma@mail.ru

DOI: https://doi.org/10.17816/DD626643