DOI: https://doi.org/10.17816/DD629352

Опыт применения методов радиомики и дозиомики для нахождения предикторов лучевых повреждений лёгких

Н.В. Нуднов^{1,2,3}, В.М. Сотников¹, М.Е. Иванников¹, Э.С-А. Шахвалиева¹, А.А. Борисов¹, В.В. Леденёв⁴, А.Ю. Смыслов¹, А.В. Ананьина¹

- 1 Российский научный центр рентгенорадиологии, Москва, Россия;
- ² Российская медицинская академия непрерывного профессионального образования, Москва, Россия;
- ³ Российский университет дружбы народов имени Патриса Лумумбы, Москва, Россия;
- 4 Центральный клинический военный госпиталь, Москва, Россия

RNJATOHHA

Обоснование. Радиомика — это технология извлечения, анализа и интерпретации количественных характеристик из цифровых медицинских изображений, основанная на машинном обучении. В последние годы в литературе всё чаще встречается термин «дозиомика», обозначающий новое направление в радиомике. Дозиомика — это метод текстурного анализа планов распределения дозы облучения при лучевой терапии. Большая часть опубликованных исследований в области дозиомики посвящена её применению в прогнозировании лучевого повреждения лёгких.

Цель — выявление предикторов (биомаркёров) лучевых повреждений лёгких с помощью текстурного анализа (методами радиомики и дозиомики) изображений лёгких, а также мягких тканей грудной клетки, полученных с помощью компьютерной томографии.

Материалы и методы. В исследовании использовали данные 36 женщин с раком молочной железы, прошедших послеоперационный курс конформной лучевой терапии. Ретроспективно пациенток разделили на две группы по степени постлучевых изменений лёгких. Результаты компьютерной томографии всех пациенток, полученые на этапе планирования лучевой терапии, и планы распределения доз облучения анализировали с помощью программного обеспечения 3D Slicer с функцией выгрузки показателей радиомики и дозиомики из областей интереса. В качестве областей интереса выбирали область мягких тканей грудной клетки и области лёгкого на стороне облучения, дозовая нагрузка на которые превышала 3 и 10 Гр.

Результаты. В первую группу включили 13 пациенток с минимальными постлучевыми изменениями в лёгких, во вторую группу — 23 пациентки с постлучевым пневмофиброзом. В области лёгкого на стороне облучения с дозовой нагрузкой более 3 Гр статистически значимые различия между группами пациенток получены по трём показателям радиомики и одному показателю дозиомики. В области лёгкого на стороне облучения с дозовой нагрузкой более 10 Гр статистически значимые различия получены по 12 показателям радиомики и 1 показателю дозиомики. В области мягких тканей грудной клетки на стороне облучения значимые различия получены по 18 показателям радиомики и 4 показателям дозиомики.

Заключение. В результате выполненного исследования получен ряд показателей радиомики и дозиомики, статистически различающихся у пациенток с минимальными постлучевыми изменениями и постлучевым пневмофиброзом лёгких после проведения лучевой терапии по поводу рака молочной железы. Предикторы (биомаркёры), выявленные нами на основе текстурного анализа, можно использовать для прогнозирования постлучевых повреждений лёгких и выявления пациентов с более высоким риском их развития.

Ключевые слова: дозиомика; радиомика; лучевая терапия; текстурный анализ; постлучевой пневмонит.

Как цитировать:

Нуднов Н.В., Сотников В.М., Иванников М.Е., Шахвалиева Э.С-А., Борисов А.А., Леденёв В.В., Смыслов А.Ю., Ананьина А.В. Опыт применения методов радиомики и дозиомики для нахождения предикторов лучевых повреждений лёгких // Digital Diagnostics. 2024. Т. 5, № 4. С. 752—764. DOI: https://doi.org/10.17816/DD629352

Рукопись получена: 23.03.2024 Рукопись одобрена: 15.05.2024 Опубликована online: 20.11.2024

ORIGINAL STUDY ARTICLES Vol. 5 (4) 2024 Digital Diagnostics

DOI: https://doi.org/10.17816/DD629352

Use of radiomics and dosiomics to identify predictors of radiation-induced lung injury

Nikolay V. Nudnov^{1,2,3}, Vladimir M. Sotnikov¹, Mikhail E. Ivannikov¹, Elina S-A. Shakhvalieva¹, Aleksandr A. Borisov¹, Vasiliy V. Ledenev⁴, Aleksei Yu. Smyslov¹, Alina V. Ananina¹

- ¹ Russian Scientific Center of Roentgenoradiology, Moscow, Russia;
- ² Russian Medical Academy of Continuous Professional Education, Moscow, Russia;
- ³ Peoples' Friendship University of Russia, Moscow, Russia;
- ⁴ Central Clinical Military Hospital, Moscow, Russia

ABSTRACT

753

BACKGROUND: Radiomics is a machine learning-based technology that extracts, analyzes, and interprets quantitative features from digital medical images. In recent years, dosiomics has become an increasingly common term in the literature to describe a new radiomics method. Dosiomics is a texture analysis method for evaluating radiotherapy dose distribution patterns. Most of the published research in dosiomics evaluates its use in predicting radiation-induced lung injury.

AIM: The aim of the study was to identify predictors (biomarkers) of radiation-induced lung injury using texture analysis of computed tomography (CT) images of lungs and chest soft tissues using radiomics and dosiomics.

MATERIALS AND METHODS: The study used data from 36 women with breast cancer who received postoperative conformal radiation therapy. Retrospectively, the patients were divided into two groups according to the severity of post-radiation lung lesions. 3D Slicer was used to evaluate CT results of all patients obtained during radiation treatment planning and radiation dose distribution patterns. The software was able to unload radiomic and dosiomic features from regions of interest. The regions of interest included chest soft tissue and lung areas on the irradiated side where the dose burden exceeded 3 and 10 Gy.

RESULTS: The first group included 13 patients with minimal radiation-induced lung lesions, and the second group included 23 patients with post-radiation pneumofibrosis. In the lung area on the side irradiated with more than 3 Gy, statistically significant differences between the patient groups were obtained for three radiomic features and one dosiomic feature. In the lung area on the side irradiated with more than 10 Gy, statistically significant differences were obtained for 12 radiomic features and 1 dosiomic feature. In the area of chest soft tissues on the irradiated side, significant differences were obtained for 18 radiomic features and 4 dosiomic features.

CONCLUSION: As a result, a number of radiomic and dosiomic features were identified which were statistically different in patients with minimal lesions and pulmonary pneumofibrosis following radiation therapy for breast cancer. Based on texture analysis, predictors (biomarkers) were identified to predict post-radiation lung injury and identify higher-risk patients.

Keywords: dosiomics; radiomics; radiation therapy; texture analysis; post-radiation pneumonitis.

To cite this article:

Nudnov NV, Sotnikov MV, Ivannikov ME, Shakhvalieva ES-A, Borisov AA, Ledenev VV, Smyslov AYu, Ananina AV. Use of radiomics and dosiomics to identify predictors of radiation-induced lung injury. *Digital Diagnostics*. 2024;5(4):752–764. DOI: https://doi.org/10.17816/DD629352

754

DOI: https://doi.org/10.17816/DD629352

放射组学和剂量组学在寻找肺辐射损伤预测因数方面的应用 经验

Nikolay V. Nudnov^{1,2,3}, Vladimir M. Sotnikov¹, Mikhail E. Ivannikov¹, Elina S-A. Shakhvalieva¹, Aleksandr A. Borisov¹, Vasiliy V. Ledenev⁴, Aleksei Yu. Smyslov¹, Alina V. Ananina¹

- ¹ Russian Scientific Center of Roentgenoradiology, Moscow, Russia;
- ² Russian Medical Academy of Continuous Professional Education, Moscow, Russia;
- ³ Peoples' Friendship University of Russia, Moscow, Russia;
- ⁴ Central Clinical Military Hospital, Moscow, Russia

摘要

论证。放射组学是一种基于机器学习从数字医学影像中提取、分析和解释定量特征的技术。 近年来,"剂量组学"一词在文献中越来越常见,标志着放射组学的新方向。剂量组学是一种对放射治疗过程中辐射剂量分布计划进行纹理分析的方法。剂量组学领域已发表的大多数研究都致力于其在预测辐射引起的肺损伤中的应用。

目的 一 利用放射组学的纹理方法和肺部图像的剂量组学分析,以及计算机断层扫描获得的胸部软组织,从而确定肺部辐射损伤的预测因数(生物标志物)。

材料和方法。研究中,使用了36名接受术后适形放射治疗的乳腺癌妇女的数据。根据放疗后肺部变化的程度回顾性地将患者分为两组。使用3D Slicer软件对所有患者在放疗计划阶段获得的CT扫描结果和辐射剂量分布计划进行分析,该软件具有上传研究区域的放射组学和剂量组学指标的功能。选择照射一侧的胸部软组织和肺部区域作为研究区域,剂量负荷分别超过3 Gy和10 Gy。

结果。第一组包括13名放疗后肺部变化最小的患者,第二组包括23名放疗后肺纤维化的患者。在剂量负荷超过3 Gy的照射侧肺区,三项放射组学指标和一项剂量组学指标在患者组间存在显著统计学差异。在剂量负荷超过10 Gy的照射侧肺区,12项放射组学指标和1项剂量组学指标存在显著统计学差异。在照射一侧的胸部软组织区域,18项放射组学指标和4项剂量组学指标存在显著差异。

结论。研究结果表明,在乳腺癌放疗后、肺部放疗后微小变化和放疗后肺纤维化的患者中,一系列的放射组学和剂量组学指标存在统计学差异。我们根据纹理分析确定的预测因数(生物标志物)可用于预测放射后肺损伤,并确定发生肺损伤的发展风险较高的患者。

关键词:剂量组学;放射组学;放疗;纹理分析;放疗后肺炎。

引用本文:

Nudnov NV, Sotnikov MV, Ivannikov ME, Shakhvalieva ES-A, Borisov AA, Ledenev VV, Smyslov AYu, Ananina AV. 放射组学和剂量组学在寻找肺辐射损伤预测因数方面的应用经验. Digital Diagnostics. 2024;5(4):752–764. DOI: https://doi.org/10.17816/DD629352

ОБОСНОВАНИЕ

В настоящее время лучевая терапия является одним из ведущих методов лечения онкологических заболеваний [1]. Лучевое повреждение лёгких — одно из возможных осложнений лучевой терапии опухолей торакальной локализации. Проблеме профилактики данного осложнения посвящено большое количество исследований, целью которых является создание прогностических моделей, основанных на различных клинических, радиомических и прочих показателях [2].

Новым и активно развивающимся методом точной оценки медицинских изображений является радиомика — технология, основанная на текстурном анализе, позволяющая количественно охарактеризовать исследуемое изображение. Радиомика позволяет извлекать из медицинских изображений стандарта DICOM биомаркёры изображений — параметры, характеризующие различные патологические изменения. Показатели радиомики извлекают с помощью открытой библиотеки PyRadiomics (AIM, USA). Радиомика включает две основные группы показателей: статистики первого порядка и текстурные матрицы смежности и равномерности. К последним относятся следующие:

- GLCM (Gray Level Co-occurrence Matrix) матрица совпадения уровней серого;
- GLRLM (Gray Level Run Length Matrix) матрица длин областей уровней серого;
- GLSZM (Gray Level Size Zone Matrix) матрица зон интенсивности уровня серого;
- NGTDM (Neighbouring Gray Tone Difference Matrix) матрица разности соседних оттенков серого;
- GLDM (Gray Level Dependence Matrix) матрица зависимости уровня серого [3, 4].

Подробное описание и интерпретация всех показателей с формулами для их вычисления представлены на официальном сайте pyradiomics.readthedocs.io [4].

Исследования подтверждают возможность использования радиомики в прогнозировании течения заболеваний, а также развития осложнений в процессе терапии [5].

В последние годы в литературе всё чаще встречается термин «дозиомика», предложенный Н.S. Gabryś и соавт. [6], для обозначения нового направления в радиомике. Дозиомика — это метод текстурного анализа распределения дозы облучения при лучевой терапии. Показатели дозиомики, как и радиомики, включают в себя матрицы смежности и равномерности, описывающие взаимное расположение пикселей и вокселей в изображении. Значительная часть опубликованных за рубежом исследований в области дозиомики посвящена её применению в прогнозировании лучевого повреждения лёгких [7].

Встречаемость лучевого повреждения лёгких может варьировать в диапазоне от 5 до 58% [8]. Многочисленные факторы риска развития лучевого повреждения лёгких разделяют на две группы. К первой группе относят

факторы, обусловленные непосредственно терапией, а именно: суммарную очаговую дозу, фракционирование дозы, объём облучённой лёгочной ткани, метод облучения, применение химио- и иммунотерапии. Во вторую группу включают факторы, связанные с пациентом, такие как возраст, курение, наличие интерстициальных заболеваний лёгких и хронической обструктивной болезни лёгких, а также расположение облучаемого новообразования и индивидуальная генетически обусловленная радиочувствительность [9].

Лучевое повреждение лёгких развивается в два этапа [10]. Первый этап представляет собой постлучевой пневмонит, или пульмонит, — острое интерстициальное воспаление лёгочной ткани, развивающееся в течение 3-6 нед. после завершения лучевой терапии [11]. На втором этапе в течение последующих шести мес. острые изменения лёгких либо полностью регрессируют, либо (при дозе 30 Гр и более) реорганизуются в хронические изменения разной степени выраженности. На месте отёка и инфильтрации формируется необратимый постлучевой пневмофиброз [12, 13]. Диагноз постлучевого пневмонита устанавливают на основании трёх критериев: факт проведения лучевой терапии, наличие симптомов (лихорадка, кашель со слизистой мокротой, одышка) и характерная картина по данным компьютерной томографии (КТ) [14]. Подобная картина включает в себя первоначальные изменения по типу «матового стекла» с последующим появлением зон консолидации, формированием фиброзной тяжистости, а также, в ряде случаев, развитием синдрома «воздушной бронхограммы» и тракционных бронхоэктазов [12, 15]. Развитие постлучевого пневмонита ассоциировано со снижением качества жизни и выживаемости онкологических пациентов [9]. Снижению частоты развития лучевых повреждений лёгких способствует оптимизация лучевой терапии, т. е. достижение необходимого уровня локального контроля опухоли при минимальных объёме и дозе облучения близлежащих отделов лёгких [16].

ЦЕЛЬ

Выявить предикторы лучевых повреждений лёгких с помощью текстурного анализа (методами радиомики и дозиомики) изображений лёгких, а также мягких тканей грудной клетки, полученных с помощью компьютерной томографии до начала лучевой терапии.

МАТЕРИАЛЫ И МЕТОДЫ

Дизайн исследования

Проведено одноцентровое ретроспективное исследование, включавшее анализ результатов КТ органов грудной клетки у пациенток с раком молочной железы.

Критерии соответствия

В исследовании использовали данные пациенток, страдающих раком молочной железы и прошедших послеоперационный курс конформной лучевой терапии в Российском научном центре рентгенорадиологии (РНЦРР) в 2022—2023 гг. Критерием отбора являлось наличие в Радиологической информационной системе РНЦРР повторной КТ органов грудной клетки, выполненной не ранее чем через 6 мес. после прохождения курса лучевой терапии, что позволило оценить степень постлучевых изменений в лёгких. Разделение пациенток на группы по степени постлучевых изменений лёгких проводили на основании заключения независимых врачей-рентгенологов.

Описание медицинского вмешательства

Предлучевая подготовка пациенток включала КТ органов грудной клетки на аппарате Somatom™ Definition AS (Siemens, Германия) и объёмное дозиметрическое планирование лучевой терапии. Облучение грудной стенки и ложа опухоли проводили с использованием аппарата TrueBeam™ (Varian MS, США) до достижения эквивалентной суммарной очаговой дозы 50–60 Гр. Повторную КТ органов грудной клетки выполняли не ранее чем через 6 мес. после лучевой терапии.

Основной исход исследования

Нулевой гипотезой исследования принято утверждение о том, что между двумя исследуемыми группами не будет статистически значимых различий ни по одному из 107 по-казателей радиомики или дозиомики.

Методы регистрации исходов

Результаты КТ пациенток, полученные на этапе планирования лучевой терапии, и данные дозовых распределений загружали в программное обеспечение 3D Slicer (The Slicer Community) с функцией выгрузки показателей радиомики и дозиомики из областей интереса [17]. Показатели радиомики и дозиомики рассчитывали для области мягких тканей грудной клетки, входивших в зону облучения по передней поверхности, и областей лёгкого на стороне облучения, дозовая нагрузка на которые превышала 3 и 10 Гр. Выделение зон интереса проводили в полуавтоматическом режиме в программном обеспечении Varian (Varian, США). Из каждой исследуемой области извлекли по 107 показателей радиомики и дозиомики, включая статистики первого порядка, показатели формы, матрицы смежности и равномерности. 756

Анализ в группах

На основании результатов повторной КТ органов грудной клетки, полученных через 6 мес. после лучевой терапии, пациенток ретроспективно разделили на две группы: в первую группу включили пациенток с минимальными постлучевыми изменениями, во вторую группу — с выраженным постлучевым пневмофиброзом.

Этическая экспертиза

Протокол исследования одобрен Независимым этическим комитетом при ФГБУ «РНЦРР» Минздрава России (протокол заседания N° 2 от 01.03.2024).

Статистический анализ

Размер выборки участников исследования предварительно не рассчитывали. Обработку показателей и статистический анализ проводили с помощью Microsoft Office Excel и свободной среды разработки программного обеспечения с открытым исходным кодом для языка программирования R — RStudio (Posit, США). Для выявления статистически значимых различий между количественными показателями использовали непараметрический критерий Манна—Уитни, между качественными показателями — точный критерий Фишера. Показатели групп представлены в виде медианы, 25-го и 75-го перцентилей (первого и третьего квартилей). При уровне значимости менее 0,05 различия считали статистически значимыми.

РЕЗУЛЬТАТЫ

Объекты исследования

В рамках данного исследования проанализировали КТ-изображения лёгких, а также мягких тканей грудной клетки 36 пациенток, полученные до начала лучевой терапии рака молочной железы.

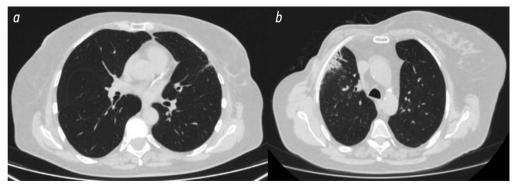


Рис. 1. Компьютерная томография органов грудной клетки пациенток через 6 мес. после проведения лучевой терапии: а — минимальные постлучевые изменения в левом лёгком; b — выраженный постлучевой пневмофиброз в правом лёгком.

Таблица 1. Сравнительная характеристика исследуемых групп пациенток по количественным параметрам

Парамет	p	Группа 1 (минимальные постлучевые изменения)	Группа 2 (постлучевой пневмофиброз)	р
Возраст, лет		61 [54; 67]	65 [55; 72]	0,179
Объём лёгкого, облучённый в дозе, см ³	>3 Гp	945,94 [781,81; 1175,68]	828,67 [668,27; 1032,38]	0,190
	>10 Гp	613,88 [420,02; 694,52]	527,27 [403,10; 611,62]	0,344
	>30 Гр	330,36 [239,15; 449,71]	354,03 [248,07; 447,64]	0,771

Примечание. Данные представлены как Me [Q1; Q3], где Me — медиана, Q1 — первый квартиль, Q3 — третий квартиль.

Таблица 2. Сравнительная характеристика исследуемых групп пациенток по качественным параметрам

Параметр		Количество пациенток (доля от числа участников группы, %)		
		Группа 1 (минимальные постлучевые изменения)	Группа 2 (постлучевой пневмофиброз)	р
Курение табака		0	0	_
Наличие сопутствующих заболеваний лёгких		1 (7,7)	0	0,361
Наличие сопутствующих заболеваний сердца		5 (38,5)	10 (43,5)	0,526
Предшествующая химиотерапия		8 (61,5)	15 (65,2)	0,821
Поражённая	Левая	6 (46,1)	12 (52,2)	0,500
молочная железа	Правая	7 (53,8)	11 (47,8)	
Стадия	T1-4N1-3M0	10 (76,9)	12 (52,2)	0,175
заболевания	T1-3N0M0	3 (23,1)	11 (47,8)	
Тип операции	Радикальная мастэктомия	7 (53,8)	15 (65,2)	0,480
	Секторальная резекция	6 (46,1)	7 (30,4)	

Примечание. Стадия заболевания указана по системе TNM, где T0–4 (tumor) характеризует размер первичной опухоли, N0–3 (nodes) характеризует количество поражённых регионарных лимфоузлов, M0–1 (metastasis) характеризует наличие метастазов.

В первую группу включили 13 пациенток с минимальными постлучевыми изменениями (рис. 1, *a*), во вторую группу — 23 пациентки с выраженным постлучевым пневмофиброзом (рис. 1, *b*).

Сравнительная характеристика двух групп пациенток по количественным и качественным параметрам представлена в табл. 1 и табл. 2.

Проведённая сравнительная характеристика указывает на валидность двух групп для сравнения.

Основные результаты исследования

При выборе областей интереса на томографических изображениях для расчёта показателей радиомики и дозиомики определили пороговую дозу облучения 3 Гр. Данный выбор основан на полученных нами ранее результатах, согласно которым в зонах лёгких, облучённых в дозе от 0 до 3 Гр, лучевые повреждения отсутствовали [13]. В ряде зарубежных работ облучение в дозе 3 Гр также рассматривают как прогностический показатель развития пневмонита [18]. При текстурном анализе большого объёма тканей происходит усреднение вычисленных показателей радиомики, что усложняет поиск статистически значимых различий, а также может привести к потере важных текстурных особенностей, содержащихся в небольшой части исследуемой зоны. В связи с этим мы выбрали дополнительную пороговую дозу облучения 10 Гр.

В области лёгкого с дозовой нагрузкой больше 3 Гр статистически значимые различия выявили по трём по-казателям радиомики и по одному показателю дозиомики. Результаты сравнения статистически различающихся по-казателей с указанием медианы, первого и третьего квартилей, а также уровня значимости различий представлены в табл. 3.

Значения показателя GLSZM Size Zone Non Uniformity говорят о том, что у пациенток с постлучевым пневмофиброзом лёгких (группа 2) присутствует большая однородность объёмов зон уровня серого. Данный результат согласуется с показателем NGTDM Busyness, показывающим разнородность соседних пикселей на изображении, который выше у пациенток с минимальными постлучевыми изменениями (группа 1). Эти результаты могут указывать на то, что лёгочная ткань пациентов первой группы, способная более эффективно восстанавливаться после лучевого повреждения, характеризуется более высокой дифференцировкой градаций уровня серого и менее склонна к образованию крупных однородных зон. КТ-изменения лёгочной ткани в ранней фазе лучевого пневмонита определяются местной интерстициальной воспалительной реакцией и повреждением клеток микрососудистого эндотелия [19, 20]. Вполне вероятно, что исходное состояние микрососудистого русла лёгких пациента может оказать влияние на способность лёгочной ткани к репарации лучевых повреждений,

Таблица 3. Сравнение двух групп пациенток по показателям радиомики и дозиомики в области лёгкого, облучённой в дозе больше 3 Гр

Название показателя	Группа 1 (минимальные постлучевые изменения)	Группа 2 (постлучевой пневмофиброз)	р
	Показатели радиомики		,
GLRLM Gray Level Non Uniformity	17 464,52 [12 199,53; 26 481,37]	11 904,86 [7059,69; 20 646,00]	0,050
GLSZM Size Zone Non Uniformity	19 096,83 [15 693,52; 23 905,24]	13 307,97 [11 842,68; 19 368,63]	0,043
NGTDM Busyness	74,81 [55,15; 102,73]	56,56 [34,50; 78,11]	0,047
	Показатели дозиомики		
GLCM Maximum Probability	0,60 [0,55; 0,68]	0,55 [0,53; 0,61]	0,050

Примечание. Данные представлены как Me [Q1; Q3], где Me — медиана, Q1 — первый квартиль, Q3 — третий квартиль; GLRLM — матрица длин областей уровней серого; GLSZM — матрица зон интенсивности уровня серого; NGTDM — матрица разности соседних оттенков серого; GLCM — матрица совпадения уровней серого.

а выявленные нами текстурные показатели могут зависеть и от развитости микрососудистого русла.

В области лёгкого на стороне облучения с дозовой нагрузкой больше 10 Гр статистически значимые различия получены по 12 показателям радиомики и 1 показателю дозиомики. Результаты сравнения статистически различающихся показателей приведены в табл. 4.

К примеру, показатель GLCM Cluster Shade, описывающий разнородность распределения кластеров уровня серого, в среднем на 44% выше в группе пациентов с постлучевым пневмофиброзом лёгких. Данный

вывод подтверждают значения показателя GLCM Cluster Prominence, которые говорят о том, что у пациентов с минимальными лучевыми повреждениями (первая группа) значения уровней серого в кластерах распределены ближе к среднему значению по лёгкому, а у пациентов с постлучевым пневмофиброзом наблюдается тенденция к более чем на 40% большему разбросу значений уровня серого в отдельных кластерах. Эти данные свидетельствуют о том, что у пациенток с постлучевым пневмофиброзом исходно в лёгочной ткани имеется большее количество участков повышенной плотности

758

Таблица 4. Сравнение двух групп пациенток по показателям радиомики и дозиомики в области лёгкого, облучённой в дозе больше 10 Гр

Название показателя	Группа 1 (минимальные постлучевые изменения)	Группа 2 (постлучевой пневмофиброз)	p
	Показатели радиомики		
Flatness	0,23 [0,22; 0,25]	0,26 [0,24; 0,29]	0,040
First Order Mean Absolute Deviation	112,38 [97,82; 152,24]	129,81 [118,67; 153,71]	0,048
GLCM Cluster Prominence	186 230,89 [148 727,18; 306 231,09]	321 625,90 [230 877,79; 417 140,54]	0,028
GLCM Cluster Shade	3366,36 [2860,31; 5779,96]	5998,08 [4269,97; 6497,98]	0,037
GLCM Cluster Tendency	105,53 [84,37; 171,43]	156,66 [122,25; 179,47]	0,048
GLCM Correlation	0,55 [0,49; 0,60]	0,59 [0,55; 0,63]	0,048
GLCM Sum Squares	34,48 [27,65; 54,08]	46,15 [37,78; 55,89]	0,044
GLDM Dependence Entropy	7,10 [6,95; 7,21]	7,19 [7,03; 7,34]	0,056
GLRLM High Gray Level Run Emphasis	149,91 [129,33; 200,75]	176,32 [159,08; 199,05]	0,044
GLRLM Run Entropy	4,85 [4,70; 5,00]	5,01 [4,85; 5,08]	0,024
GLRLM Short Run High Gray Level Emphasis	143,26 [121,04; 193,03]	168,49 [152,61; 191,58]	0,048
GLSZM Zone Entropy	6,63 [6,55; 6,73]	6,75 [6,67; 6,81]	0,031
	Показатели дозиомики		
NGTDM Flatness	0,23 [0,22; 0,25]	0,26 [0,24; 0,30]	0,040

Примечание. Данные представлены как Me [Q1; Q3], где Me — медиана, Q1 — первый квартиль, Q3 — третий квартиль; GLCM — матрица совпадения уровней серого; GLRLM — матрица длин областей уровней серого; GLSZM — матрица зон интенсивности уровня серого; NGTDM — матрица разности соседних оттенков серого.

и повышенной воздушности, чем у пациенток с минимальными постлучевыми изменениями, для которых характерна более однородная структура лёгочной ткани. Показатель же GLRLM High Gray Level Run Emphasis говорит о том, что во второй группе пациенток концентрация участков лёгочной ткани с высокими значениями уровня серого на 15% больше, чем у пациенток первой группы. Это может указывать на исходно более плотную структуру лёгочной ткани у пациенток с выраженными постлучевыми изменениями в лёгких, что соответствует результатам, полученным нами ранее [13]. Морфологически это может быть связано с исходно большим количеством участков лёгочного фиброза.

В области мягких тканей грудной клетки в зоне облучения выявили 18 показателей радиомики (табл. 5) и 4 показателя дозиомики (табл. 6), статистически значимо различающихся у двух групп пациенток.

По данным табл. 5, значения текстурных характеристик достоверно различаются между группами сравнения. Так, мера тонкости и грубости текстуры (показатель Autocorrelation матрицы совпадения уровней серого GLSM) на 42% выше у пациенток второй группы. Показатель Large Area Emphasis матрицы зон интенсивности уровня серого (GLSZM), более высокие значения которого указывают на наличие более грубой текстуры в больших областях, на 46% выше у пациенток первой группы. Показатель Busyness матрицы разности соседних оттенков серого (NGTDM), характеризующий меру изменения значения интенсивности между соседними пикселями, выше на 31% в первой группе. Последние два показателя указывают на более неоднородную текстуру с резким изменением интенсивности у пациенток из первой группы.

По данным табл. 6, показатель суммарной энтропии матрицы GLCM выше во второй группе пациенток,

Таблица 5. Сравнение двух групп пациенток по показателям радиомики в области мягких тканей грудной клетки на стороне облучения

Название показателя	Группа 1 (минимальные постлучевые изменения)	Группа 2 (постлучевой пневмофиброз)	р
GLCM Autocorrelation	327,37 [26,23; 716,81]	778,92 [250,21; 1299,00]	0,040
GLCM Joint Average	17,92 [5,00; 26,57]	27,83 [15,66; 36,00]	0,040
GLCM Sum Average	35,85 [10,00; 53,15]	55,67 [31,32; 72,01]	0,040
GLDM High Gray Level Emphasis	330,75 [26,84; 722,33]	785,17 [252,23; 1301,19]	0,040
GLDM Large Dependence High Gray Level Emphasis	34 520,55 [4229,63; 90 474,35]	94 735,42 [34 425,42; 178 891,14]	0,031
GLDM Small Dependence Emphasis	0,04 [0,04; 0,05]	0,06 [0,04; 0,06]	0,031
GLDM Small Dependence High Gray Level Emphasis	15,94 [1,32; 36,06]	40,80 [14,16; 69,29]	0,034
GLRLM High Gray Level Run Emphasis	337,14 [29,46; 731,67]	786,90 [257,09; 1312,39]	0,044
GLRLM Long Run High Gray Level Emphasis	1047,96 [132,06; 2600,37]	2816,82 [992,76; 5222,59]	0,028
GLRLM Short Run High Gray Level Emphasis	259,01 [20,99; 561,86]	573,11 [186,60; 970,35]	0,048
GLSZM Gray Level NonUniformity Normalized	0,13 [0,09; 0,20]	0,10 [0,07; 0,11]	0,031
GLSZM Large Area Emphasis	1 738 981,12 [415 642,22; 3 268 243,47]	815 272,55 [212 074,04; 1 207 397,63]	0,048
GLSZM Large Area Low Gray Level Emphasis	8843,95 [1392,9; 148 364,17]	1025,44 [474,68; 4267,21]	0,011
GLSZM Small Area High Gray Level Emphasis	232,12 [27,48; 493,15]	517,89 [205,88; 828,21]	0,044
GLSZM Zone Percentage	0,03 [0,03; 0,04]	0,04 [0,03; 0,05]	0,044
GLSZM Zone Variance	1 737 696,14 [414 536,61; 3 266 421,34]	814 359,34 [211 603,3; 1 206 631,61]	0,048
NGTDM Busyness	25,52 [9,61; 135,47]	8,10 [4,51; 17,92]	0,012
NGTDM Strength	0,09 [0,05; 0,25]	0,28 [0,15; 0,54]	0,037

Примечание. Данные представлены как Me [Q1; Q3], где Me — медиана, Q1 — первый квартиль, Q3 — третий квартиль; GLCM — матрица совпадения уровней серого; GLRLM — матрица длин областей уровней серого; GLSZM — матрица зон интенсивности уровня серого; NGTDM — матрица разности соседних оттенков серого.

Таблица 6. Сравнение двух групп пациенток по показателям дозиомики в области мягких тканей грудной клетки на стороне облучения

Название показателя	Группа 1 (минимальные постлучевые изменения)	Группа 2 (постлучевой пневмофиброз)	р
GLCM Sum Entropy	1,10 [0,55; 1,23]	1,26 [0,65; 1,31]	0,050
GLRLM Long Run Low Gray Level Emphasis	64,07 [39,55; 120,07]	38,78 [25,75; 55,68]	0,028
GLRLM Short Run High Gray Level Emphasis	0,40 [0,25; 0,49]	0,47 [0,42; 0,94]	0,026
NGTDM Complexity	0,06 [0,04; 0,07]	0,08 [0,06; 0,25]	0,050

Примечание. Данные представлены как Me [Q1; Q3], где Me — медиана, Q1 — первый квартиль, Q3 — третий квартиль; GLCM — матрица совпадения уровней серого; GLRLM — матрица длин областей уровней серого; NGTDM — матрица разности соседних оттенков серого.

что указывает на бо́льшую разницу в уровнях интенсивности в изображении. В свою очередь, показатель Long Run Low Gray Level Emphasis матрицы GLRLM, отражающий распределение низких значений уровней серого, выше в первой группе, что указывает на бо́льшую концентрацию низких значений уровня серого в изображении. Большое количество показателей, различающихся между двумя группами пациенток (см. табл. 5 и 6), говорит о том, что состояние мягких тканей грудной клетки и молочной железы может являться предиктором протекания процесса восстановления лёгочной ткани в постлучевой период. Однако на данный момент характер и механизмы этой связи остаются объектами дальнейших исследований.

ОБСУЖДЕНИЕ

Большое количество факторов риска развития лучевого повреждения лёгких позволяет исследователям использовать различные количественные и качественные показатели для прогнозирования данного осложнения. Так, L. Zhao и соавт. [21] продемонстрировали, что повышение содержания трансформирующего фактора роста TGF-β в крови в течение четырёх нед. после начала лучевой терапии указывает на риск развития лучевого повреждения лёгких с чувствительностью 66,7% и специфичностью 95,0%. В свою очередь, S. Chen и соавт. [22] создали модель на основе искусственной нейронной сети, прогнозирующую развитие лучевого пневмонита по следующим входным признакам: объём лёгочной ткани, получивший дозу более 16 Гр, обобщённая эквивалентная однородная доза, объём форсированного выдоха за 1 с. диффузионная способность лёгких по монооксиду углерода и факт химиотерапии в анамнезе. Также многие авторы в своих исследованиях использовали радиобиологическую модель вероятности возникновения лучевых повреждений в нормальных тканях [23].

Применение радиомики может повысить прогностическую способность моделей. Так, L. Wang и соавт. [18] создали номограмму радиомики с индексом согласия 0,921. Результаты целого ряда работ по прогнозированию

лучевого повреждения лёгких указывают на более высокую эффективность моделей, включающих показатели радиомики и дозиомики [7]. Среди данной группы исследований наиболее показательного результата удалось достичь Y. Huang и соавт. [24]. Их прогностическая модель, основанная на комбинации дозиомических и радиомических показателей, продемонстрировала высокую прогностическую способность (AUC 0,9). Стоит отметить, что интеграция клинических показателей в прогностические модели дополнительно повышает их эффективность [25]. Исследования, посвящённые сравнению эффективности показателей дозиметрии (характеризующих проведённое лучевое лечение) и дозиомики, указывают на целесообразность использования дозиомики в прогностических моделях [26-28]. При этом Т. Adachi и соавт. [29] продемонстрировали, что комбинирование показателей дозиметрии и дозиомики повышает прогностическую способность модели. Исходя из опыта зарубежных коллег, комбинированные модели на основе дозиомики, радиомики, клинических данных и дозиметрии могут стать мощным прогностическим инструментом [25, 30].

760

Результаты описанных выше исследований подтверждают полученные нами данные. Показатели радиомики и дозиомики статистически значимо различаются в группах пациентов с минимально выраженными постлучевыми изменениями и постлучевым пневмофиброзом. Эти различия определяют ещё до проведения лучевой терапии и позволяют прогнозировать развитие постлучевого пневмофиброза.

Ограничения исследования

Наша работа имеет ряд важных ограничений. Во-первых, это малый размер выборки, что мы планируем исправить в последующих работах. Во-вторых, использование изображений, полученных только на одном КТ-аппарате. Это ограничение можно разрешить, благодаря проведению многоцентрового исследования или использованию сторонних датасетов, что требует дополнительной стандартизации получения и обработки изображений. Третьим важным ограничением является

отсутствие общепринятых точных критериев дифференцировки минимальных постлучевых изменений и постлучевого пневмофиброза. Данное ограничение можно устранить применением технологий компьютерного зрения с подсчётом объёма поражённой и здоровой лёгочной ткани. Наше исследование можно считать экспериментальным и пилотным, однако оно имеет большие перспективы для дальнейшего развития.

ЗАКЛЮЧЕНИЕ

В результате выполненного исследования получен ряд показателей радиомики и дозиомики, статистически различающихся у пациенток с минимальными постлучевыми изменениями и постлучевым пневмофиброзом лёгких после проведения лучевой терапии по поводу рака молочной железы. Обнаруженные различия присутствуют как в лёгочной ткани, так и в мягких тканях грудной клетки, попавших в зону облучения. Наличие подобных различий позволяет утверждать, что на развитие постлучевого повреждения лёгких могут влиять индивидуальные характеристики пациента, такие как структура его лёгочной ткани и состояние мягких тканей грудной клетки. Выявленные нами показатели текстурного анализа можно применять в прогнозировании постлучевых повреждений лёгких и выявлении пациентов с более высоким риском их развития. На основе исследований зарубежных коллег можно заключить, что при прогнозировании развития лучевых повреждений лёгких следует ориентироваться не только на текстурные характеристики КТ-изображений, но и на показатели дозиметрии, лабораторные и другие клинические показатели, что позволит максимально полно оценить состояние конкретного пациента и получить прогностические модели с высокими точностными характеристиками.

СПИСОК ЛИТЕРАТУРЫ

- **1.** Хмелевский Е.В., Каприн А.Д. Состояние радиотерапевтической службы России: сравнительный анализ и перспективы развития // Онкология. Журнал им. П.А. Герцена. 2017. Т. 6, № 4. С. 38–41. EDN: ZFCHGJ doi: 10.17116/onkolog20176438-41
- **2.** Kuipers M.E., van Doorn-Wink K.C.J., Hiemstra P.S., Slats A.M. Predicting radiation-induced lung injury in lung cancer patients challenges and opportunities: Predicting radiation-induced lung injury // Int J Radiat Oncol Biol Phys. 2023. Vol. 118, N 3. P. 639–649. doi: 10.1016/j.ijrobp.2023.10.044
- **3.** Mayerhoefer M.E., Materka A., Langs G., et al. Introduction to Radiomics // J Nucl Med. 2020. Vol. 61, N 4. P. 488–495. doi: 10.2967/jnumed.118.222893
- **4.** Radiomic Features: pyradiomics v3.0.1.post15+g2791e23 documentation [Internet]. [дата обращения: 25.11.2023]. Режим доступа: https://pyradiomics.readthedocs.io/en/latest/features.html#
- **5.** Avanzo M., Stancanello J., Pirrone G., et al. Radiomics and deep learning in lung cancer // Strahlenther Onkol. 2020. Vol. 196, N 10. P. 879–887. doi: 10.1007/s00066-020-01625-9

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Источник финансирования. Авторы заявляют об отсутствии внешнего финансирования при проведении исследования.

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

Вклад авторов. Все авторы подтверждают соответствие своего авторства международным критериям ICMJE (все авторы внесли существенный вклад в разработку концепции, проведение исследования и подготовку статьи, прочли и одобрили финальную версию перед публикацией). Наибольший вклад распределён следующим образом: Н.В. Нуднов, В.М. Сотников — общая концепция, дизайн исследования и утверждение окончательного варианта статьи; М.Е. Иванников, Э.С-А. Шахвалиева, А.А. Борисов, В.В. Леденёв, А.Ю. Смыслов, А.В. Ананьина — сбор и анализ данных, написание и редактирование текста рукописи.

Информированное согласие на публикацию. Авторы получили письменное согласие пациентов на публикацию медицинских данных и фотографий, приведённых в настоящей статье.

ADDITIONAL INFORMATION

Funding source. This study was not supported by any external sources of funding.

Competing interests. The authors declare that they have no competing interests.

Authors' contribution. All authors made a substantial contribution to the conception of the work, acquisition, analysis, interpretation of data for the work, drafting and revising the work, final approval of the version to be published and agree to be accountable for all aspects of the work. N.V. Nudnov, V.M. Sotnikov — design of the study and final proofreading of the manuscript; M.E. Ivannikov, E.S-A. Shakhvalieva, A.A. Borisov, V.V. Ledenev, A.Yu. Smyslov, A.V. Ananina — data collection and analysis, writing and editing of the manuscript.

Consent for publication. Written consent was obtained from the patient for publication of relevant medical information and all of accompanying images within the manuscript.

- **6.** Gabryś H.S., Buettner F., Sterzing F., et al. Design and selection of machine learning methods using radiomics and dosiomics for normal tissue complication probability modeling of xerostomia // Front Oncol. 2018. Vol. 8. ID 35. doi: 10.3389/fonc.2018.00035
- **7.** Солодкий В.А., Нуднов Н.В., Иванников М.Е., и др. Дозиомика в анализе медицинских изображений и перспективы её использования в клинической практике // Digital Diagnostics. 2023. Т. 4, № 3. С. 340-355. EDN: EQRWGJ doi: 10.17816/DD420053
- **8.** Arroyo-Hernández M., Maldonado F., Lozano-Ruiz F., et al. Radiation-induced lung injury: Current evidence // BMC Pulm Med. 2021. Vol. 21, N 1. ID 9. doi: 10.1186/s12890-020-01376-4
- **9.** Rahi M.S., Parekh J., Pednekar P., et al. Radiation-Induced Lung Injury Current Perspectives and Management // Clin Pract. 2021. Vol. 11, N 3. P. 410–429. doi: 10.3390/clinpract11030056
- **10.** Yan Y., Fu J., Kowalchuk R.O., et al. Exploration of radiation-induced lung injury, from mechanism to treatment:

- a narrative review // Transl Lung Cancer Res. 2022. Vol. 11, N 2. P. 307–322. doi: 10.21037/tlcr-22-108
- **11.** Гладилина И.А., Шабанов М.А., Кравец О.А., и др. Постлучевые повреждения лёгких // Онкологический журнал: лучевая диагностика, лучевая терапия. 2020. Т. 3, № 2. С. 9–18. EDN: SKOAAY doi: 10.37174/2587-7593-2020-3-2-9-18
- **12.** Нуднов Н.В., Сотников В.М., Леденёв В.В., Барышникова Д.В. Возможности качественной оценки лучевых повреждений лёг-ких методом компьютерной томографии // Медицинская визуализация. 2016. № 1. С. 39–46. EDN: VWOIIB
- 13. Леденёв В.В. Методика количественной оценки лучевых повреждений лёгких у онкологических пациентов по данным рентгеновской компьютерной томографии: диссертация на соискание учёной степени канд. мед. наук. Москва, 2023. 133 с. Режим доступа: https://www.rncrr.ru/nauka/dissertatsionnyy-sovet/obyavleniya-o-zashchitakh/upload%202023/Леденев_Диссертация.pdf Дата обращения: 25.11.2023. EDN: YBWROM
- **14.** Zhou C., Yu J. Chinese expert consensus on diagnosis and treatment of radiation pneumonitis // Prec Radiat Oncol. 2022. Vol. 6, N 3. P. 262–271. doi: 10.1002/pro6.1169
- **15.** Konkol M., Śniatała P., Milecki P. Radiation-induced lung injury what do we know in the era of modern radiotherapy? // Rep Pract Oncol Radiother. 2022. Vol. 27, N 3. P. 552–565. doi: 10.5603/RPOR.a2022.0046
- **16.** Шаймуратов Р.И. Радиационно-индуцированные поражения лёгких. Современное состояние проблемы // Вестник современной клинической медицины. 2020. Т. 13, № 3. С. 63—73. EDN: BIZZHU doi: 10.20969/VSKM.2020.13(3).63-73
- **17.** 3D Slicer image computing platform [Internet]. [дата обращения: 25.11.2023]. Режим доступа: https://www.slicer.org/
- **18.** Wang L., Gao Z., Li C., et al. Computed Tomography-Based Delta-Radiomics Analysis for Discriminating Radiation Pneumonitis in Patients With Esophageal Cancer After Radiation Therapy // Int J Radiat Oncol Biol Phys. 2021. Vol. 111, N 2. P. 443–455. doi: 10.1016/j.ijrobp.2021.04.047
- **19.** Begosh-Mayne D., Kumar S.S., Toffel S., et al. The dose-response characteristics of four NTCP models: using a novel CT-based radiomic method to quantify radiation-induced lung density changes // Sci Rep. 2020. Vol. 10, N 1. ID 10559. doi: 10.1038/s41598-020-67499-0

20. Korpela E., Liu S.K. Endothelial perturbations and therapeutic strategies in normal tissue radiation damage // Radiat Oncol. 2014. Vol. 9. ID 266. doi: 10.1186/s13014-014-0266-7

762

- **21.** Zhao L., Sheldon K., Chen M., et al. The predictive role of plasma TGF-beta1 during radiation therapy for radiation-induced lung toxicity deserves further study in patients with non-small cell lung cancer // Lung Cancer. 2008. Vol. 59, N 2. P. 232–239. doi: 10.1016/j.lungcan.2007.08.010
- **22.** Chen S., Zhou S., Zhang J., et al. A neural network model to predict lung radiation-induced pneumonitis // Med Phys. 2007. Vol. 34, N 9. P. 3420–3427. doi: 10.1118/1.2759601
- **23.** Jain V., Berman A.T. Radiation Pneumonitis: Old Problem, New Tricks // Cancers (Basel). 2018. Vol. 10, N 7. ID 222. doi: 10.3390/cancers10070222
- **24.** Huang Y., Feng A., Lin Y., et al. Radiation pneumonitis prediction after stereotactic body radiation therapy based on 3D dose distribution: Dosiomics and/or deep learning-based radiomics features // Radiat Oncol. 2022. Vol. 17, N 1. ID 188. doi: 10.1186/s13014-022-02154-8
- **25.** Zhang Z., Wang Z., Yan M., et al. Radiomics and dosiomics signature from whole lung predicts radiation pneumonitis: A model development study with prospective external validation and decision-curve analysis // Int J Radiat Oncol Biol Phys. 2023. Vol. 115, N 3. P. 746–758. doi: 10.1016/j.ijrobp.2022.08.047
- **26.** Puttanawarut C., Sirirutbunkajorn N., Khachonkham S., et al. Biological dosiomic features for the prediction of radiation pneumonitis in esophageal cancer patients // Radiat Oncol. 2021. Vol. 16, N 1. ID 220. doi: 10.1186/s13014-021-01950-y
- **27.** Liang B., Yan H., Tian Y., et al. Dosiomics: Extracting 3D spatial features from dose distribution to predict incidence of radiation pneumonitis // Front Oncol. 2019. Vol. 9. ID 269. doi: 10.3389/fonc.2019.00269
- **28.** Liang B., Tian Y., Chen X., et al. Prediction of radiation pneumonitis with dose distribution: A convolutional neural network (CNN) based model // Front Oncol. 2020. Vol. 9. ID 1500. doi: 10.3389/fonc.2019.01500
- **29.** Adachi T., Nakamura M., Shintani T., et al. Multi-institutional dose-segmented dosiomic analysis for predicting radiation pneumonitis after lung stereotactic body radiation therapy // Med Phys. 2021. Vol. 48, N 4. P. 1781–1791. doi: 10.1002/mp.14769
- **30.** Zheng X., Guo W., Wang Y., et al. Multi-omics to predict acute radiation esophagitis in patients with lung cancer treated with intensity-modulated radiation therapy // Eur J Med Res. 2023. Vol. 28, N 1. ID 126. doi: 10.1186/s40001-023-01041-6

REFERENCES

- **1.** Khmelevsky EV, Kaprin AD. The state of a radiotherapy service in Russia: Comparative analysis and prospects for development. *P.A. Herzen Journal of Oncology.* 2017;6(4):38-41. EDN: ZFCHGJ doi: 10.17116/onkolog20176438-41
- **2.** Kuipers ME, van Doorn-Wink KCJ, Hiemstra PS, Slats AM. Predicting radiation-induced lung injury in lung cancer patients challenges and opportunities: Predicting radiation-induced lung injury. *Int J Radiat Oncol Biol Phys.* 2023;118(3):639–649. doi: 10.1016/j.ijrobp.2023.10.044
- **3.** Mayerhoefer ME, Materka A, Langs G, et al. Introduction to Radiomics. *J Nucl Med.* 2020;61(4):488–495. doi: 10.2967/jnumed.118.222893
- **4.** Radiomic Features: pyradiomics v3.0.1.post15+g2791e23 doc umentation [Internet]. [cited 25 Nov 2023]. Available from: https://pyradiomics.readthedocs.io/en/latest/features.html#.
- **5.** Avanzo M, Stancanello J, Pirrone G, Sartor G. Radiomics and deep learning in lung cancer. *Strahlenther Onkol.* 2020;196(10):879–887. doi: 10.1007/s00066-020-01625-9

- **6.** Gabryś HS, Buettner F, Sterzing F, et al. Design and selection of machine learning methods using radiomics and dosiomics for normal tissue complication probability modeling of xerostomia. *Front Oncol.* 2018;8:35. doi: 10.3389/fonc.2018.00035
- **7.** Solodkiy VA, Nudnov NV, Ivannikov ME, et al. Dosiomics in the analysis of medical images and prospects for its use in clinical practice. *Digital Diagnostics*. 2023;4(3):340–355. EDN: EQRWGJ doi: 10.17816/DD420053
- **8.** Arroyo-Hernández M, Maldonado F, Lozano-Ruiz F, et al. Radiation-induced lung injury: Current evidence. *BMC Pulm Med.* 2021;21(1):9. doi: 10.1186/s12890-020-01376-4
- **9.** Rahi MS, Parekh J, Pednekar P, et al. Radiation-Induced Lung Injury Current Perspectives and Management. *Clin Pract.* 2021;11(3):410–429. doi: 10.3390/clinpract11030056

- **10.** Yan Y, Fu J, Kowalchuk RO, et al. Exploration of radiation-induced lung injury, from mechanism to treatment: a narrative review. *Transl Lung Cancer Res.* 2022;11(2):307–322. doi: 10.21037/tlcr-22-108
- **11.** Gladilina IA, Shabanov MA, Kravets OA, et al. Radiation-Induced Lung Injury. *Journal of oncology: diagnostic radiology and radiotherapy.* 2020;3(2):9–18. EDN: SKOAAY doi: 10.37174/2587-7593-2020-3-2-9-18
- **12.** Nudnov NV, Sotnikov VM, Ledenev VV, Baryshnikova DV. Features a Qualitative Assessment of Radiation-Induced Lung Damage by CT. *Medical Visualization*. 2016;(1):39–46. EDN: VWOIIB
- 13. Ledenev VV. Methodology for quantitative assessment of radiation damage to lungs in cancer patients using CT [dissertation]. Moscow, 2023. Available from: https://www.rncrr.ru/nauka/dissertatsionnyysovet/obyavleniya-o-zashchitakh/upload%202023/Леденев_Диссертация.pdf (In Russ.) EDN: YBWROM
- **14.** Zhou C, Yu J. Chinese expert consensus on diagnosis and treatment of radiation pneumonitis. *Prec Radiat Oncol.* 2022;6(3):262–271. doi: 10.1002/pro6.1169
- **15.** Konkol M, Śniatała P, Milecki P. Radiation-induced lung injury what do we know in the era of modern radiotherapy? *Rep Pract Oncol Radiother*. 2022;27(3):552–565. doi: 10.5603/RPOR.a2022.0046
- **16.** Shaymuratov RI. Radiation-induced lung injury. A review. *The Bulletin of Contemporary Clinical Medicine.* 2020;13(3):63–73. EDN: BIZZHU doi: 10.20969/VSKM.2020.13(3).63-73
- **17.** 3D Slicer image computing platform [Internet]. [cited 25 Nov 2023]. Available from: https://www.slicer.org/
- **18.** Wang L, Gao Z, Li C, et al. Computed Tomography-Based Delta-Radiomics Analysis for Discriminating Radiation Pneumonitis in Patients With Esophageal Cancer After Radiation Therapy. *Int J Radiat Oncol Biol Phys.* 2021;111(2):443–455. doi: 10.1016/j.ijrobp.2021.04.047
- **19.** Begosh-Mayne D, Kumar SS, Toffel S, et al. The dose-response characteristics of four NTCP models: using a novel CT-based radiomic method to quantify radiation-induced lung density changes. *Sci Rep.* 2020;10(1):10559. doi: 10.1038/s41598-020-67499-0
- **20.** Korpela E, Liu SK. Endothelial perturbations and therapeutic strategies in normal tissue radiation damage. *Radiat Oncol.* 2014;9:266. doi: 10.1186/s13014-014-0266-7

- **21.** Zhao L, Sheldon K, Chen M, et al. The predictive role of plasma TGF-beta1 during radiation therapy for radiation-induced lung toxicity deserves further study in patients with non-small cell lung cancer. *Lung Cancer*. 2008;59(2):232–239. doi: 10.1016/j.lungcan.2007.08.010 **22.** Chen S, Zhou S, Zhang J, et al. A neural network model to predict lung radiation-induced pneumonitis. *Med Phys*. 2007;34(9):3420–3427. doi: 10.1118/1.2759601
- **23.** Jain V, Berman AT. Radiation Pneumonitis: Old Problem, New Tricks. *Cancers (Basel)*. 2018;10(7):222. doi: 10.3390/cancers10070222 **24.** Huang Y, Feng A, Lin Y, et al. Radiation pneumonitis prediction after stereotactic body radiation therapy based on 3D dose distribution:
- Dosiomics and/or deep learning-based radiomics features. *Radiat Oncol.* 2022;17(1):188. doi: 10.1186/s13014-022-02154-8
- **25.** Zhang Z, Wang Z, Yan M, et al. Radiomics and dosiomics signature from whole lung predicts radiation pneumonitis: A model development study with prospective external validation and decision-curve analysis. *Int J Radiat Oncol Biol Phys.* 2023;115(3):746–758. doi: 10.1016/j.ijrobp.2022.08.047
- **26.** Puttanawarut C, Sirirutbunkajorn N, Khachonkham S, et al. Biological dosiomic features for the prediction of radiation pneumonitis in esophageal cancer patients. *Radiat Oncol.* 2021;16(1):220. doi: 10.1186/s13014-021-01950-y
- **27.** Liang B, Yan H, Tian Y, et al. Dosiomics: Extracting 3D spatial features from dose distribution to predict incidence of radiation pneumonitis. *Front Oncol.* 2019;(9):269.doi: 10.3389/fonc.2019.00269
- **28.** Liang B, Tian Y, Chen X, et al. Prediction of radiation pneumonitis with dose distribution: A convolutional neural network (CNN) based model. *Front Oncol.* 2020;9:1500. doi: 10.3389/fonc.2019.01500
- **29.** Adachi T, Nakamura M, Shintani T, et al. Multi-institutional dose-segmented dosiomic analysis for predicting radiation pneumonitis after lung stereotactic body radiation therapy. *Med Phys.* 2021;48(4):1781–1791. doi: 10.1002/mp.14769
- **30.** Zheng X, Guo W, Wang Y, et al. Multi-omics to predict acute radiation esophagitis in patients with lung cancer treated with intensity-modulated radiation therapy. *Eur J Med Res.* 2023;28(1):126. doi: 10.1186/s40001-023-01041-6

ОБ АВТОРАХ

* Иванников Михаил Евгеньевич;

адрес: Россия, 117997, Москва, ул. Профсоюзная, д. 86;

ORCID: 0009-0007-0407-0953;

eLibrary SPIN: 3419-2977;

e-mail: ivannikovmichail@gmail.com

Нуднов Николай Васильевич, д-р мед. наук, профессор;

ORCID: 0000-0001-5994-0468; eLibrary SPIN: 3018-2527;

e-mail: nudnov@rncrr.ru

Сотников Владимир Михайлович, д-р мед. наук, профессор;

ORCID: 0000-0003-0498-314X; eLibrary SPIN: 3845-0154; e-mail: vmsotnikov@mail.ru

Шахвалиева Элина Саид-Аминовна;

ORCID: 0009-0000-7535-8523; e-mail: shelina9558@gmail.com

AUTHORS' INFO

* Mikhail E. Ivannikov, MD;

address: 86 Profsoyuznaya str., 117997, Moscow, Russia;

ORCID: 0009-0007-0407-0953;

eLibrary SPIN: 3419-2977;

e-mail: ivannikovmichail@gmail.com

Nikolay V. Nudnov, MD, Dr. Sci. (Medicine), Professor;

ORCID: 0000-0001-5994-0468;

eLibrary SPIN: 3018-2527;

e-mail: nudnov@rncrr.ru

Vladimir M. Sotnikov, MD, Dr. Sci. (Medicine), Professor;

ORCID: 0000-0003-0498-314X;

eLibrary SPIN: 3845-0154;

e-mail: vmsotnikov@mail.ru

Elina S-A. Shakhvalieva, MD;

ORCID: 0009-0000-7535-8523;

e-mail: shelina9558@gmail.com

Борисов Александр Александрович;

ORCID: 0000-0003-4036-5883;

eLibrary SPIN: 4294-4736; e-mail: aleksandrborisov10650@gmail.com

Леденёв Василий Владимирович, канд. мед. наук;

ORCID: 0000-0002-2856-2107;

eLibrary SPIN: 2791-0329;

e-mail: Ledenevvv007@gmail.com

Смыслов Алексей Юрьевич, канд. техн. наук;

ORCID: 0000-0002-6409-6756; eLibrary SPIN: 9341-0037; e-mail: smyslov.ay@gmail.com

Ананьина Алина Валентиновна;

ORCID: 0009-0002-4562-9729; eLibrary SPIN: 9699-7690; e-mail: vastruhina.a.v@yandex.ru

Aleksandr A. Borisov, MD;

ORCID: 0000-0003-4036-5883; eLibrary SPIN: 4294-4736;

e-mail: aleksandrborisov10650@gmail.com

764

Vasiliy V. Ledenev, MD, Cand. Sci. (Medicine);

ORCID: 0000-0002-2856-2107;

eLibrary SPIN: 2791-0329;

e-mail: Ledenevvv007@gmail.com

Aleksei Yu. Smyslov, Cand. Sci. (Engineering);

ORCID: 0000-0002-6409-6756; eLibrary SPIN: 9341-0037; e-mail: smyslov.ay@gmail.com

Alina V. Ananina;

ORCID: 0009-0002-4562-9729; eLibrary SPIN: 9699-7690; e-mail: vastruhina.a.v@yandex.ru

^{*} Автор, ответственный за переписку / Corresponding author