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ABSTRACT

BACKGROUND: Radiomics is a machine learning-based technology that extracts, analyzes, and interprets quantitative features
from digital medical images. In recent years, dosiomics has become an increasingly common term in the literature to describe
a new radiomics method. Dosiomics is a texture analysis method for evaluating radiotherapy dose distribution patterns. Most
of the published research in dosiomics evaluates its use in predicting radiation-induced lung injury.

AIM: The aim of the study was to identify predictors (biomarkers) of radiation-induced lung injury using texture analysis
of computed tomography (CT) images of lungs and chest soft tissues using radiomics and dosiomics.

MATERIALS AND METHODS: The study used data from 36 women with breast cancer who received postoperative conformal
radiation therapy. Retrospectively, the patients were divided into two groups according to the severity of post-radiation lung
lesions. 3D Slicer was used to evaluate CT results of all patients obtained during radiation treatment planning and radiation dose
distribution patterns. The software was able to unload radiomic and dosiomic features from regions of interest. The regions
of interest included chest soft tissue and lung areas on the irradiated side where the dose burden exceeded 3 and 10 Gy.
RESULTS: The first group included 13 patients with minimal radiation-induced lung lesions, and the second group included
23 patients with post-radiation pneumofibrosis. In the lung area on the side irradiated with more than 3 Gy, statistically
significant differences between the patient groups were obtained for three radiomic features and one dosiomic feature. In the
lung area on the side irradiated with more than 10 Gy, statistically significant differences were obtained for 12 radiomic
features and 1 dosiomic feature. In the area of chest soft tissues on the irradiated side, significant differences were obtained
for 18 radiomic features and 4 dosiomic features.

CONCLUSION: As a result, a number of radiomic and dosiomic features were identified which were statistically different
in patients with minimal lesions and pulmonary pneumofibrosis following radiation therapy for breast cancer. Based on texture
analysis, predictors (biomarkers) were identified to predict post-radiation lung injury and identify higher-risk patients.
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AHHOTALIUA

O6ocHoBaHWe. PafvoMMKa — 3TO TEXHONOTUS W3BJIEYEHUS, aHanM3a U MHTEpPNpeTaLMn KOJIMHECTBEHHBIX XapaKTepUCTUK
13 UMdPOBLIX MELMULMHCKUX M300paXeHuii, OCHOBaHHas Ha MalMHHOM obyueHuu. B nocnepHue ropbl B inTepatype BCE
yallle BCTpeYaeTcs TEPMUH «[03MOMUKa», 0003HaYaloWMA HOBOE HampaBneHue B paguMoMuke. [lo3MoMMKa — 3T0 METOA
TEKCTYPHOrO aHanu3a NnaHoB pacrpefeneHus [o3bl 061y4eHns npu nyyeBoii Tepanun. bonbluas yacTb onybaMKOBaHHbIX MC-
CNe0BaHUii B 061aCTM LO3MOMUKM NOCBALLEHA €€ NPUMEHEHMIO B MPOrHO3MPOBAHMM JTY4EBOr0 NOBPEXAEHUS NETKMX.

Lieno — BbisiBNEHME NpeaMKTOpoB (61MOMapKEPOB) NIy4eBbIX NOBPEXAEHUA NIEMKUX C MOMOLLbIO TEKCTYPHOrO aHanu3a (MeTo-
AaMW PafMOMUKU W [LO3MOMMKM) U30BpaXKeHNN NETKNX, @ TaKKe MATKUX TKaHeW rpyaHON KIEeTKW, NOJTYYeHHBIX C MOMOLLbIO
KOMMbIOTEPHOI ToMorpadum.

Marepuanbl u MeToabl. B uccnefoBaHuM UCMonb3oBanM AaHHble 36 MEHLMH C PaKOM MOJIOYHOW XKene3bl, NpoLlefwmx
MocnieonepaLmoHHbIi Kypc KOHPOPMHOM NyyeBoii Tepanuu. PeTpocneKTMBHO NALMEHTOK pasfenuiun Ha fiBe rpynnbl no cre-
MEeHN NOCT/yYeBbIX M3MEHEHWUN NETKMX. Pe3ynbTaTbl KOMMbIOTEPHOW TOMOrpaduy BCeX MaUMEHTOK, MOJTyYeHHbIE Ha 3Tane
MNaHUPOBaHWA NIy4eBOi Tepanum, U MiiaHbl pacnpeaenieHus fo3 06nyyYeHns aHanM3UpoBaK € NOMOLLbK NporpaMMHoro obe-
cnevenms 3D Slicer ¢ GpyHKUMel BbIFPY3KM NOKa3aTenen paguoMMKM W [03MOMMKM U3 obnacTeii uHTepeca. B KadecTse 06-
nacTei uHTepeca Bblbupanu 06acTb MATKUX TKaHel rpyaHOM KNeTKU M 06nacTv NErKoro Ha CTopoHe 06nyyeHuns, fo30Bast
Harpyska Ha Kotopble npesbiwana 3 1 10 Ip.

Pesynbtathl. B nepByto rpynny Br4MamM 13 nauMeHTOK ¢ MUHMMANbHBIMU MOCTYYEBLIMU U3MEHEHUAIMU B JIErKUX, BO BTO-
pyto rpynny — 23 naumMeHTKM C MocTny4eBbIM MHeBMOGMOpo3oM. B obnact nérkoro Ha cTopoHe 06y4eHMs ¢ 4030BOVA
Harpyskoi bonee 3 [p CTAaTUCTUYECKU 3HAYMMBIE Pa3NUuMs MeXAY rPynnaMu NauMeHTOK NOJTydeHbl N0 TPEM MoKasaTenam
pagMOMMKM WM OOHOMY MOKa3aTenlo A03MOMUMKW. B obnactu nérkoro Ha ctopoHe 06ayveHMs c [030BOW Harpyskon bonee
10 I'p cTaTUCTUYECKM 3HAUMMbIE pa3nnyMA NoydeHbl No 12 nokasatensam paauoMukn U 1 nokasartento 403vMoMUKK. B obna-
CTU MSATKUX TKaHel rpyLHON KNETKM Ha CTOpPOHe 06/1y4eHUs 3HaUMMbIE pPasnuuMs noyyeHbl no 18 nokasatenam pagvoMuKu
U 4 noKasatensm LO3MOMUKM.

3aksioyeHune. B pesynbTate BbIMOMHEHHOrO MUCCNEA0BaHWA NONYYEH pAL, MOKasaTeneid pagvoMUKW U LO3MOMUKK, CTaTu-
CTMYECKM Pa3NNYaOLLMXCA Y NALMEHTOK C MUHUMANbHBIMW NOCTYYEBbIMU U3MEHEHWAMMW M NOCTAYYEBLIM MTHEBMOGUOPO30OM
NETKWX Nocne NPOBEAEHNS JTy4eBOi TePanuW No NOBOAY paka MONOYHOM Xene3bl. [TpeauKkTopsl (BOMapKEpDI), BbISBNIEHHbIE
HaMU Ha OCHOBE TEKCTYPHOTO aHanW3a, MOXHO WUCMOMb30BaTb A/ MPOrHO3MPOBaHMS MOCTNYYEBbIX MOBPEXAEHUIA NETKUX
U BbISIBNIEHUS NALMEHTOB C 60s1ee BHICOKUM PUCKOM UX PasBUTUA.

KnioueBble cnoBa: 103M0OMUKa; paAMOMUKa; nyyeBana TepanuA; TEKCTyprIVI aHalns; I'IOCTﬂy‘-IEBOVI MHEBMOHUT.
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BACKGROUND

Radiation therapy is a widely used method in cancer
treatment [1]. However, it carries the risk of radiation-induced
lung injury, particularly in patients with thoracic tumors.
To mitigate this complication, various studies have explored
the development of prognostic models using clinical,
radiomic, and other relevant parameters [2].

Radiomics is an emerging technique based on texture
analysis that evaluates quantitative image features to support
the interpretation of medical images. It extracts image
biomarkers that reflect abnormal changes from DICOM-format
medical images. In this study, radiomic features were
extracted using the open-source PyRadiomics library (AIM,
USA). Radiomic features are generally categorized into two
groups: first-order statistics and texture matrices related
to co-occurrence and uniformity. These texture matrices
include the following:

» Gray Level Co-occurrence Matrix (GLCM)

» Gray Level Run Length Matrix (GLRLM)

» Gray Level Size Zone Matrix (GLSZM)
 Neighboring Gray Tone Difference Matrix (NGTDM)
 Gray Level Dependence Matrix (GLDM) [3, 4].

A comprehensive explanation of these parameters
and the formulas used for their calculation is available
at pyradiomics.readthedocs.io [4].

Current evidence supports the utility of radiomics
in predicting disease progression and treatment-related
complications [5].

The term dosiomics, introduced by Gabrys et al. [6],
is now widely used to describe a subfield within radiomics.
Dosiomics applies texture analysis techniques to assess
patterns in radiotherapy dose distributions. Similar to radiomic
features, dosiomic features include co-occurrence
and uniformity matrices that represent spatial relationships
among pixels and voxels within an image. Most international
studies on dosiomics have concentrated on its application
in predicting radiation-induced lung injury [7].

The reported incidence of radiation-induced lung injury
varies between 5% and 58% [8]. Risk factors for this condition
can be categorized into two main groups. The first group
comprises treatment-related factors, such as total radiation
dose, dose fractionation, the volume of lung tissue exposed,
the irradiation technique used, and the administration
of chemotherapy or immunotherapy. The second group
includes patient-related factors, such as age, smoking status,
preexisting interstitial lung disease or chronic obstructive
pulmonary disease, the location of the irradiated tumor,
and individual, genetically determined radiosensitivity [9].

Radiation-induced lung injury progresses in two stages [10].
The first stage, known as postradiation pneumonitis or
pulmonitis, is characterized by acute interstitial inflammation
of lung tissue and typically occurs within 3-6 weeks
after radiation therapy [11]. The second stage develops
over the following 6 months, during which the acute changes
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may completely resolve or, especially at doses =30 Gy, evolve
into chronic changes of varying severity. In such cases,
edema and infiltration may lead to irreversible postradiation
pneumofibrosis [12, 13]. The diagnosis of postradiation
pneumonitis is based on three key criteria: a prior history
of radiation therapy; the presence of symptoms such as fever,
cough with mucoid sputum, and dyspnea; and characteristic
findings on computed tomography (CT) scans [14]. Typical
CT features include initial ground-glass opacities, followed
by areas of consolidation, fibrous bands, and in some cases,
aerial bronchograms and traction bronchiectasis [12, 15].
Postradiation pneumonitis negatively impacts both quality
of life and survival in cancer patients [9]. Enhancing radiation
therapy techniques to achieve effective local tumor control
while minimizing radiation exposure to surrounding lung
tissue can reduce the risk of radiation-induced lung injury [16].

AIM

To identify predictors of radiation-induced lung injury
by performing texture analysis of CT images of the lungs
and chest soft tissues obtained prior to radiation therapy,
using radiomic and dosiomic methods.

MATERIALS AND METHODS
Study design

This was a single-center, retrospective study involving
the analysis of chest CT scans from patients with breast
cancer.

Eligibility criteria

The study included patients with breast cancer
who underwent postoperative conformal radiotherapy
at the Russian Scientific Center of Roentgenology
and Radiology between 2022 and 2023. The inclusion criterion
was the availability of follow-up chest CT data obtained at least
6 months after radiation therapy, recorded in the Radiology
Information System of the same center. These CT scans were
used to assess the extent of postradiation lung changes.
Participants were grouped based on the severity of these
changes, as determined by the conclusions of an independent
radiologist.

Intervention

Pre-radiation preparation included a chest CT scan
performed on a SOMATOM Definition AS scanner (Siemens,
Germany), followed by volumetric dosimetric planning
for radiation therapy. Irradiation of the chest wall and tumor
bed was carried out using the TrueBeam system (Varian
MS, USA) with a total equivalent radiation dose ranging
from 50 to 60 Gy. A follow-up chest CT scan was conducted
no earlier than 6 months after the completion of radiation
therapy.
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Main study outcome

The study’s null hypothesis assumed no statistically
significant  differences between groups in any
of the 107 evaluated radiomic and dosiomic features.

Outcomes registration

CT images acquired during radiation therapy planning,
along with corresponding dose distribution data, were
processed using 3D Slicer software (3D Slicer Community).
This software enabled the extraction of radiomic and dosiomic
features from defined regions of interest [17]. Features were
calculated for chest soft tissues within the irradiation zone
along the anterior surface, as well as for lung regions that
received radiation doses exceeding 3 Gy and 10 Gy. Regions
of interest were identified semi-automatically using Varian
software (Varian, USA). For each region, 107 radiomic
and dosiomic features were extracted, including first-order
statistics, shape descriptors, and texture matrices related
to co-occurrence and uniformity.

Subgroup analysis

Participants were retrospectively divided into two groups
based on follow-up chest CT findings obtained 6 months
after radiation therapy. Group 1 consisted of patients
with minimal postradiation changes, while Group 2 included
those with pronounced postradiation pneumofibrosis.

Ethics approval

The study protocol was reviewed and approved
by the Independent Ethics Committee of the Russian Scientific
Center of Roentgenology and Radiology on March 1, 2024
(Meeting Minutes No. 2).

Statistical analysis

The sample size was not predetermined. Data processing
and statistical analysis were performed using Microsoft
Office Excel and R-Studio, an open-source development
environment for the R programming language (Posit, USA).
The Mann-Whitney U test and Fisher’s exact test were
used to evaluate differences in quantitative and qualitative
variables, respectively. Data are reported as the median
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along with the 25th and 75th percentiles (first and third
quartiles). A p-value of <0.05 was considered statistically
significant.

RESULTS

Participants

The study analyzed pre-radiation therapy CT scans
of the lungs and chest soft tissues from 36 patients
with breast cancer.

Group 1 consisted of 13 patients who exhibited minimal
postradiation changes (Fig. 1a), while Group 2 included
23 patients with severe postradiation pneumofibrosis (Fig. 1b).

Quantitative and qualitative parameter comparisons
between the two groups are shown in Tables 1 and 2.

The results support the validity of the intergroup
comparisons.

Primary results

For the calculation of radiomic and dosiomic features,
regions of interest on CT scans were selected based
on a radiomic dose threshold of 3 Gy. This threshold was
chosen based on previous studies showing that doses
between 0 and 3 Gy do not lead to radiation-induced lung
injury [13]. Additionally, some international studies consider
a 3 Gy dose as a potential predictor of pneumonitis [18].
In texture analysis involving large tissue volumes, radiomic
features are averaged, which can obscure significant differences
and occasionally lead to missing relevant texture parameters
in small regions of interest. Therefore, an additional threshold
dose of 10 Gy was used to improve accuracy.

In the lung regions exposed to radiation doses greater
than 3 Gy, significant differences were observed in three
radiomic features and one dosiomic feature. The comparisons
of these parameters—including median values, first and third
quartiles, and statistical significance levels—are presented
in Table 3.

The GLSZM Size Zone Nonuniformity values suggest
that patients in Group 2 (with postradiation pneumofibrosis)
exhibited more uniform gray level zone volumes. This
is in line with findings for NGTDM Busyness, which measures

Fig. 1. Chest computed tomography at 6 months postradiation therapy: a, minimal postradiation changes in the left lung; b, severe

postradiation pneumofibrosis in the right lung.
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Table 1. Comparison of study groups by quantitative parameters

(4) 2024 Digital Diagnostics

Parameter | Group 1 (minimal postradiation changes) | Group 2 (postradiation pneumofibrosis) | p-value
Age, years 61 [54; 67] 65 [55; 72] 0.179
Irradiated lung >3 Gy 945.94 [781.81; 1175.68] 828.67 [668.27; 1032.38] 0.190
volume, cm’, >10 Gy 613.88 [420.02; 694.52] 527.27 [403.10; 611.62] 0.344
radiation exposure >30 Gy 330.36 [239.15; 449.71] 354.03 [248.07;447.64] 0.771
Note. Data are presented as Me [Q1; Q3], where Me is the median, Q1 is the first quartile, and Q3 is the third quartile.
Table 2. Comparison of study groups by qualitative parameters
Number of patients (% of the total number of patients in the group)
Parameter Group 1 (minimal postradiation Group 2 (postradiation p-value
changes) pneumofibrosis)
Smoking status 0 0 -
Concomitant lung diseases 177 0 0.361
Concomitant heart disease 5(38,5) 10 (43.5) 0.526
History of chemotherapy 8 (61,5) 15 (65.2) 0.821
Affected mammary  Left 6 (46.1) 12 (52.2) 05
gland Right 7(53.8) 11 (478) '
) T1-4N1-3M0 10 (76.9) 12 (52.2)
Disease stage 0.175
T1-3NOMO 3(23.1) 11 (47.8)
Radical mastectomy 7(53.8) 15 (65.2)
Surgery type ) 0.480
Partial mastectomy 6(46.1) 7(30.4)

Note. Disease stage is indicated according to the TNM staging system, whe

re T0-4 (tumor) represents the size of the primary tumor, NO-3 (nodes)

refers to the degree of spread to regional lymph nodes, and M0-1 (metastasis) indicates the presence of distant metastasis.

Table 3. Comparison of the two patient groups by radiomic and dosiomic features in lung fields with radiation exposure exceeding 3 Gy

Parameter . GrouP 1. . _Group 2 . p-value
(minimal postradiation changes) (postradiation pneumofibrosis)
Radiomic features
GLRLM Gray Level Nonuniformity 17 464.52 [12199.53; 26481.37] 11 904.86 [7059.69; 20646.00] 0.05
GLSZM Size Zone Nonuniformity 19 096.83 [15693.52; 23905.24] 13 307.97 [11842.68; 19368.63] 0.043
NGTDM Busyness 74.81 [55.15; 102.73] 56.56 [34.50; 78.11] 0.047
Dosiomic features
GLCM Maximum Probability 0.60[0.55; 0.68] 0.55[0.53; 0.61] 0.05

Note. Data are presented as Me [Q1; Q3], where Me is the median, Q1 is the first quartile, and Q3 is the third quartile. GLRLM, Gray Level Run Length
Matrix; GLSZM, Gray Level Size Zone Matrix; NGTDM, Neighboring Gray Tone Difference Matrix; GLCM, Gray Level Co-occurrence Matrix.

the heterogeneity of adjacent pixels and was higher
in Group 1 (patients with minimal postradiation changes).
These results may indicate that lung tissue in Group 1, which
demonstrates better recovery from radiation injury, has more
distinct gray level variations and is less likely to form large
homogeneous areas. Early postradiation pneumonitis on CT
is typically characterized by local interstitial inflammation
and damage to the microvascular endothelium [19, 20].
The baseline condition of the pulmonary microvasculature
may influence the tissue’s ability to recover from radiation
injury, and the observed texture features may reflect
the degree of vascular development.

DOl https://doiorg

In the lung regions receiving more than 10 Gy of radiation,
significant differences were identified in 12 radiomic
features and 1 dosiomic feature. The comparisons for these
parameters are summarized in Table 4.

For instance, the GLCM Cluster Shade, which reflects
the heterogeneity of gray level cluster distribution, was
approximately 44% higher in patients with postradiation
pneumofibrosis. This is further supported by the GLCM Cluster
Prominence values, which indicate that in Group 1 (patients
with minimal radiation-induced injury), the gray levels
within clusters are closer to the overall average for lung
tissue. In contrast, Group 2 (patients with postradiation

/1017816/0D629352
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Table 4. Comparison of the two patient groups by radiomic and dosiomic features in lung fields with radiation exposure exceeding 10 Gy

Parameter . Group 1. . _Group 2 . p-value
(minimal postradiation changes) (postradiation pneumofibrosis)
Radiomic features
Flatness 0.23[0.22; 0.25] 0.26 [0.24; 0.29] 0.040
E‘;\sntaggier Mean Absolute 112.38 [97.82; 152.24] 129.81 [118.67; 153.71] 0.048
GLCM Cluster Prominence 186 230.89 [148727.18; 306231.09] 321 625.90 [23087779; 417140.54] 0.028
GLCM Cluster Shade 3366.36 [2860.31; 5779.96] 5998.08 [4269.97; 6497.98] 0.037
GLCM Cluster Tendency 105.53 [84.37; 171.43] 156.66 [122.25; 179.47] 0.048
GLCM Correlation 0.55 [0.49; 0.40] 0.59 [0.55; 0.63] 0.048
GLCM Sum Squares 34,48 [27.65; 54.08] 46,15 [3778; 55.89] 0.044
GLDM Dependence Entropy 7.10[6.95; 7.21] 719 [7.03; 7.34] 0.056
E;F:Jh“:;'s'gh Gray Level Run 149.91 [129.33; 200.75] 176.32 [159.08; 199.05] 0.064
GLRLM Run Entropy 1,85 [4.70; 5.00] 5.01 [4.85; 5.08] 0.02
E;F:Jh“:sisshm Run High Gray Level 143.26 [121.04; 193.03] 168.49 [152.61; 191.58] 0.048
GLSZM Zone Entropy 6.63[6.55; 6.73] 6.75 [6.67; 6.81] 0.031
Dosiomic features
NGTDM Flatness 0.23[0.22; 0.25] 0.26 [0.24; 0.30] 0.040

Note. Data are presented as Me [Q1; Q3], where Me is the median, Q1 is the first quartile, and Q3 is the third quartile. GLCM, Gray Level Co-occurrence
Matrix; GLDM, Gray Level Dependence Matrix; GLRLM, Gray Level Run Length Matrix; GLSZM, Gray Level Size Zone Matrix; NGTDM, Neighboring Gray

Tone Difference Matrix.

pneumofibrosis) showed over 40% greater variability in gray
level distribution within individual clusters. These results
suggest that, at baseline, patients in Group 2 had more
areas of increased density and heterogeneity compared
to the more uniform lung tissue in Group 1. The GLRLM
High Gray Level Run Emphasis shows that Group 2 had
15% more regions with high gray levels, suggesting denser
lung tissue at baseline in patients who later developed
significant postradiation changes. This observation aligns
with previous studies [13]. Morphologically, this could be
associated with a greater presence of fibrotic lung areas
before treatment.

In the irradiated chest soft tissues, significant differences
between groups were found in 18 radiomic features (Table 5)
and 4 dosiomic features (Table 6).

As shown in Table 5, significant intergroup differences
were observed in the texture parameters. For instance,
GLSM autocorrelation, which measures texture fineness
or coarseness, was 42% higher in Group 2. GLSZM Large
Area Emphasis, which indicates coarser texture in large
areas, was 46% higher in Group 1. NGTDM Busyness, which
reflects intensity changes between neighboring pixels, was
31% higher in Group 1. The latter two parameters suggest
that Group 1 has a less uniform texture with sharper intensity
changes.

Table 6 shows that Group 2 had higher total GLCM
Entropy, indicating more significant intensity variations
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in the image. The GLRLM Long Run Low Gray Level Emphasis,
which reflects the distribution of low gray level values, was
higher in Group 1, suggesting a greater number of low gray
level values in the image. The larger number of parameters
with intergroup differences (Tables 5 and 6) suggests that
the condition of chest soft tissues and mammary glands
could serve as predictors of lung tissue recovery following
radiation therapy. However, the underlying mechanisms
and nature of this association require further study.

DISCUSSION

The variety of risk factors for radiation-induced lung injury
allows for the use of different quantitative and qualitative
parameters to predict this complication. For instance, Zhao
et al. [21] found that elevated levels of transforming growth
factor beta (TGF-B) in the blood within the first 4 weeks
of radiation therapy could predict the risk of lung injury
with 66.7% sensitivity and 95.0% specificity. Chen et al. [22]
developed a model based on an artificial neutral network
to predict the risk of postradiation pneumonitis using factors
such as the volume of lung tissue exposed to >16 Gy,
cumulative equivalent uniform dose, forced expiratory
volume in 1 s, diffusing capacity for carbon monoxide,
and chemotherapy history. Additionally, many researchers
have applied radiobiological models to predict the risk
of radiation-induced damage to healthy tissues [23].
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Table 5. Comparison of the two patient groups by radiomic features in irradiated chest soft tissues

Parameter Group 1 Group 2 p-value
(minimal postradiation changes) (postradiation pneumofibrosis)
GLCM Autocorrelation 327,37 26.23; 716.81] 778.92 [250.21; 1299.00] 0.04
GLCM Joint Average 1792 [5.00; 26.57] 2783 [15.66; 36.00] 0.04
GLCM SumAverage 35.85[10.00; 53.15] 55.67 [31.32; 72.01] 0.04
GLDM High Gray Level Emphasis 330.75 [26.84; 722.33] 785.17 [252.23; 1301.19] 0.04
GLDM Large Dependence High 34,520.55 [4229.63; 90 474.35] 94,735.42 [36,425.42; 178,891.14] 0.031
Gray Level Emphasis
GLDM Small Dependence 0.04 [0.04; 0.05] 0.06 [0.04; 0.06] 0.031
Emphasis
GLDM Small Dependence High 15.94 [1.32; 36.06] 40.80 [14.16; 69.29] 0.034
Gray Level Emphasis
GLRLM High Gray Level Run 33714 [29.46; 731.67] 786.90 [257.09; 1312.39] 0.044
Emphasis
ELRLM Long Run High Gray Level 1047.96 [132.06; 2600.37] 2816.82 [992.76; 5222.59] 0.028
mphasis
ELRLM Short Run High Gray Level 259,01 [20.99; 561.86] 573.11 [186.60; 970.35] 0.048
mphasis
GLSZM Gray Level NonUniformity 0.13 [0.09; 0.20] 0.10 0.07: 0.11] 0.031
Normalized
GLSZM Large Area Emphasis 1,738,981.12 [415,642.22; 3,268,243.47] §15,272.55 [212,074.06; 1,20739763] 0048
GLSZM Large Area Low Gray 8843.95 [1392.9; 148,364.17] 1025.44 [474.68; 4267.21] 0.011
Level Emphasis
GLSZM Small Area High Gray 232.12 [27.48; 493.15] 517,89 [205.88; 828.21] 0.044
Level Emphasis
GLSZM Zone Percentage 0.03 [0.03; 0.04] 0.04 [0.03; 0.05] 0.044
GLSZM Zone Variance 1,737,696.14 [614,536.61; 3,266,421.34] 814,359.34 [211,603.3; 1,206,631.61] 0.048
NGTDM Busyness 2552 [9.61; 135.47] 8.10 [4.51; 17.92] 0.012
NGTDM Strength 0.09 [0.05; 0.25] 0.28 [0.15; 0.54] 0.037

Note. Data are presented as Me [Q1; Q3], where Me is the median, Q1 is the first quartile, and Q3 is the third quartile. GLCM, Gray Level Co-occurrence
Matrix; GLDM, Gray Level Dependence Matrix; GLRLM, Gray Level Run Length Matrix; GLSZM, Gray Level Size Zone Matrix; NGTDM, Neighboring Gray

Tone Difference Matrix.

Table 6. Comparison of the two patient groups by dosiomic features in irradiated chest soft tissues

Parameter Group 1 Group 2 p-value
(minimal postradiation changes) (postradiation pneumofibrosis)

GLCM SumEntropy 1.10 {0.55; 1.23] 1.26 [0.65; 1.31] 0.05
ELRLM Long Run Low Gray Level 64.07 [39.55; 120.07] 38.78 [25.75; 55.68] 0.028

mphasis
GLRLM Short Run High Gray Level 0.40 [0.25; 0.49] 0.47 [0.42; 0.94] 0.026
Emphasis
NGTDM Complexity 0.06 [0.04; 0.07] 0.08 [0.06; 0.25] 0.05

Note. Data are presented as Me [Q1; Q3], where Me is the median, Q1 is the first quartile, and Q3 is the third quartile. GLCM, Gray Level Co-occurrence
Matrix; GLRLM, Gray Level Run Length Matrix; NGTDM, Neighboring Gray Tone Difference Matrix.

Radiomics may enhance the prognostic value of predictive
models. For example, Wang et al. [24] developed a radiomics
nomogram with a concordance index of 0.921. Several studies
on predicting the risk of radiation-induced lung injury have shown
that models incorporating radiomic and dosiomic features are
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highly effective [7]. A key study by Huang et al. [18] reported
a prognostic model that combined dosiomic and radiomic
features with a high prognostic value (AUC 0.9). Importantly,
including clinical findings in prognostic models further improves
their performance [25]. Comparative studies examining
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the effectiveness of dosimetry parameters (which describe
the radiation therapy received) versus dosiomic features suggest
that dosiomics can be integrated into prognostic models [26—28].
Adachi et al. [29] found that combining dosimetry parameters
with dosiomic features enhanced the prognostic value
of models. Based on international research, combined models
using dosiomics, radiomics, clinical findings, and dosimetry can
be a powerful prognostic tool [25, 30].

The studies mentioned above support our results,
showing significant differences in radiomic and dosiomic
features between patients with minimal postradiation
changes and those with postradiation pneumofibrosis.
These differences, identified before radiation therapy, were
predictive of the risk of postradiation pneumofibrosis.

Study limitations

This study has several notable limitations. First,
the sample size is small, and we plan to address this in future
research. Second, the study utilized images from a single
CT scanner. This limitation could be overcome by conducting
a multicenter study or using external datasets, though this
would require additional standardization of image generation
and processing. The third limitation is the lack of universally
accepted criteria for differentiating between minimal
postradiation changes and postradiation pneumofibrosis. This
could be addressed by employing computer vision techniques
to measure the volume of affected and unaffected lung
tissue. While this is an experimental, pilot study, it provides
promising results for future development.

CONCLUSION

The study identified several radiomic and dosiomic features
that significantly differed between patients with minimal

REFERENCES

1. Khmelevsky EV, Kaprin AD. The state of a radiotherapy service
in Russia: Comparative analysis and prospects for development.
PA. Herzen Journal of Oncology. 2017;6(4):38-41. EDN: ZFCHGJ
doi: 10.17116/0nkolog20176438-41

2. Kuipers ME, van Doorn-Wink KCJ, Hiemstra PS, Slats AM. Predicting
radiation-induced lung injury in lung cancer patients — challenges and
opportunities: Predicting radiation-induced lung injury. Int J Radiat Oncol
Biol Phys. 2023;118(3):639—649. doi: 10.1016/].ijrobp.2023.10.044

3. Mayerhoefer ME, Materka A, Langs G, et al. Introduction to Radiomics.
J Nucl Med. 2020;61(4):488-495. doi: 10.2967/jnumed.118.222893

4. Radiomic Features: pyradiomics v3.0.1.post15+92791e23 doc
umentation [Internet]. [cited 25 Nov 2023]. Available from: https://
pyradiomics.readthedocs.io/en/latest/features.html#.

5. Avanzo M, Stancanello J, Pirrone G, Sartor G. Radiomics and deep
learning in lung cancer. Strahlenther Onkol. 2020;196(10):879-887.
doi: 10.1007/s00066-020-01625-9

6. Gabrys HS, Buettner F, Sterzing F, et al. Design and selection
of machine learning methods using radiomics and dosiomics for

Vol. 5 (4) 2024

DAl https://doi.org/10.17816/DD629352

Digital Diagnostics

postradiation changes and those with postradiation
pneumofibrosis after radiation therapy for breast cancer.
These differences were observed in both lung tissue
and irradiated chest soft tissues. The findings suggest that
the risk of radiation-induced lung injury may be influenced
by individual patient characteristics, including lung tissue
structure and the status of chest soft tissues. The texture
parameters identified in this study can help predict the risk
of radiation-induced lung injury and identify high-risk patients.
International research indicates that predicting the risk
of radiation-induced lung injury should involve not only
the texture parameters of CT images but also dosimetry,
laboratory, and other clinical parameters. This approach will
enable the most comprehensive, patient-specific assessment
and lead to highly accurate prognostic models.

ADDITIONAL INFORMATION

Funding source. This study was not supported by any external
sources of funding.

Competing interests. The authors declare that they have no
competing interests.

Authors’ contribution. All authors made a substantial contribution
to the conception of the work, acquisition, analysis, interpretation of
data for the work, drafting and revising the work, final approval of the
version to be published and agree to be accountable for all aspects of
the work. N.V. Nudnov, V.M. Sotnikov — design of the study and final
proofreading of the manuscript; M.E. Ivannikov, E.S-A. Shakhvalieva,
AA. Borisov, V.V. Ledenev, A.Yu. Smyslov, AV. Ananina — data
collection and analysis, writing and editing of the manuscript.
Consent for publication. Written consent was obtained from the
patient for publication of relevant medical information and all of
accompanying images within the manuscript.

normal tissue complication probability modeling of xerostomia. Front
Oncol. 2018;8:35. doi: 10.3389/fonc.2018.00035

7. Solodkiy VA, Nudnov NV, Ivannikov ME, et al. Dosiomics in the
analysis of medical images and prospects for its use in clinical
practice. Digital Diagnostics. 2023;4(3):340-355. EDN: EQRWGJ
doi: 10.17816/DD420053

8. Arroyo-Hernandez M, Maldonado F, Lozano-Ruiz F, et al.
Radiation-induced lung injury: Current evidence. BMC Pulm Med.
2021;21(1):9. doi: 10.1186/512890-020-01376-4

9. Rahi MS, Parekh J, Pednekar P, et al. Radiation-Induced
Lung Injury — Current Perspectives and Management. Clin Pract.
2021;11(3):410-429. doi: 10.3390/clinpract11030056

10. Yan Y, Fu J, Kowalchuk RO, et al. Exploration of radiation-induced
lung injury, from mechanism to treatment: a narrative review. Trans!
Lung Cancer Res. 2022;11(2):307-322. doi: 10.21037/tlcr-22-108
11. Gladilina 1A, Shabanov MA, Kravets OA, et al. Radiation-Induced
Lung Injury. Journal of oncology: diagnostic radiology and radiotherapy.
2020;3(2):9—18. EDN: SKOAAY doi: 10.37174/2587-7593-2020-3-2-9-18

760


https://elibrary.ru/zfchgj
https://doi.org/10.17116/onkolog20176438-41
https://doi.org/10.1016/j.ijrobp.2023.10.044
https://doi.org/10.2967/jnumed.118.222893
https://pyradiomics.readthedocs.io/en/latest/features.html#
https://pyradiomics.readthedocs.io/en/latest/features.html#
https://doi.org/10.1007/s00066-020-01625-9
https://doi.org/10.3389/fonc.2018.00035
https://elibrary.ru/eqrwgj
https://doi.org/10.17816/DD420053
https://doi.org/10.1186/s12890-020-01376-4
https://doi.org/10.3390/clinpract11030056
https://doi.org/10.21037/tlcr-22-108
https://elibrary.ru/skoaay
https://doi.org/10.37174/2587-7593-2020-3-2-9-18

761

ORIGINAL STUDY ARTICLES

12. Nudnov NV, Sotnikov VM, Ledenev VV, Baryshnikova DV. Features
a Qualitative Assessment of Radiation-Induced Lung Damage by CT.
Medical Visualization. 2016:(1):39-46. EDN: VWOIIB

13. Ledenev VV. Methodology for quantitative assessment of radliation
damage to lungs in cancer patients using CT [dissertation]. Moscow,
2023. Available from: https://www.rncrr.ru/nauka/dissertatsionnyy-
sovet/obyavleniya-o-zashchitakh/upload%202023/NepneHes_
[uccepraums.pdf (In Russ.) EDN: YBWROM

14. Zhou C, Yu J. Chinese expert consensus on diagnosis and treatment
of radiation pneumonitis. Prec Radiat Oncol 2022;6(3):262-271.
doi: 10.1002/pro6.1169

15. Konkol M, Sniatata P, Milecki P. Radiation-induced lung injury —
what do we know in the era of modern radiotherapy? Rep Pract
Oncol Radiother. 2022;27(3):552-565. doi: 10.5603/RPOR.a2022.0046
16. Shaymuratov RI. Radiation-induced lung injury. A review.
The Bulletin of Contemporary Clinical Medicine. 2020;13(3):63-73.
EDN: BIZZHU doi: 10.20969/VSKM.2020.13(3).63-73

17. 3D Slicer image computing platform [Internet]. [cited 25 Nov
2023]. Available from: https://www.slicer.org/

18. Wang L, Gao Z, Li C, et al. Computed Tomography-Based
Delta-Radiomics Analysis for Discriminating Radiation Pneumonitis in
Patients With Esophageal Cancer After Radiation Therapy. Int J Radiat
Oncol Biol Phys. 2021;111(2):443-455. doi: 10.1016/.ijrobp.2021.04.047
19. Begosh-Mayne D, Kumar SS, Toffel S, et al. The dose-respanse
characteristics of four NTCP models: using a novel CT-based radiomic
method to quantify radiation-induced lung density changes. Sci Rep.
2020;10(1):10559. doi: 10.1038/s41598-020-67499-0

20. Korpela E, Liu SK. Endothelial perturbations and therapeutic
strategies in normal tissue radiation damage. Radiat Oncol.
2014;9:266. doi: 10.1186/513014-014-0266-7

21. Zhao L, Sheldon K, Chen M, et al. The predictive role of plasma
TGF-betal during radiation therapy for radiation-induced lung toxicity

CMUACOK JIATEPATYPbI

1. Xmenesckuin EB., Kanpun A.Ll. CocTosHve paamoTtepaneBTu-
Yeckol cnybbl Poccum: CpaBHUTENBbHBIA aHanM3 U NepernexkT B
pa3suTia // OHkonorus. MypHan um. MA. Tepuena. 2017. T. 6, N° 4.
C. 38—41. EDN: ZFCHGJ doi: 10.17116/0onkolog20176438-41

2. Kuipers M.E., van Doorn-Wink K.C.J,, Hiemstra P.S., Slats AM.
Predicting radiation-induced lung injury in lung cancer patients —
challenges and opportunities: Predicting radiation-induced lung
injury // Int J Radiat Oncol Biol Phys. 2023. Vol. 118, N 3. P. 639-649.
doi: 10.1016/j.ijrobp.2023.10.044

3. Mayerhoefer M.E., Materka A, Langs G. et al. Introduction
to Radiomics // J Nucl Med. 2020. Vol. 61, N 4. P. 488-495.
doi: 10.2967/jnumed.118.222893

4. Radiomic Features: pyradiomics v3.0.1.post15+g2791e23
documentation [Internet]. [nata obpaluenums: 25.11.2023]. Pexumm
poctyna: https://pyradiomics.readthedocs.io/en/latest/features.
html#

5. Avanzo M, Stancanello J., Pirrone G., et al. Radiomics and deep
learning in lung cancer // Strahlenther Onkol. 2020. Vol. 196, N 10.
P. 879-887. doi: 10.1007/s00066-020-01625-9

6. Gabrys H.S., Buettner F., Sterzing F., et al. Design and selection
of machine learning methods using radiomics and dosiomics for

Vol. 5 (4) 2024

DAl https://doi.org/10.17816/DD629352

Digital Diagnostics

deserves further study in patients with non-small cell lung cancer.
Lung Cancer. 2008;59(2):232-239. doi: 10.1016/j.lungcan.2007.08.010
22. Chen'S, Zhou S, Zhang J, et al. A neural network model to predict
lung radiation-induced pneumonitis. Med Phys. 2007;34(9):3420-3427.
doi: 10.1118/1.2759601

23. Jain V, Berman AT. Radiation Pneumonitis: Old Problem, New
Tricks. Cancers (Basel). 2018;10(7):222. doi: 10.3390/cancers 10070222
24, Huang Y, Feng A, Lin Y, et al. Radiation pneumonitis prediction
after stereotactic body radiation therapy based on 3D dose distribution:
Dosiomics and/or deep learning-based radiomics features. Radiat
Oncol 2022;17(1):188. doi: 10.1186/513014-022-02154-8

25. Zhang Z, Wang Z, Yan M, et al. Radiomics and dosiomics
signature from whole lung predicts radiation pneumonitis:
A model development study with prospective external validation
and decision-curve analysis. Int J Radiat Oncol Biol Phys.
2023;115(3):746—758. doi: 10.1016/j.ijrobp.2022.08.047

26. Puttanawarut C, Sirirutbunkajorn N, Khachonkham S, et al.
Biological dosiomic features for the prediction of radiation
pneumonitis in esophageal cancer patients. Radiat Oncol.
2021;16(1):220. doi: 10.1186/513014-021-01950-y

27. Liang B, Yan H, Tian Y, et al. Dosiomics: Extracting 3D spatial
features from dose distribution to predict incidence of radiation
pneumonitis. Front Oncol. 2019;(9):269.doi: 10.3389/fonc.2019.00269
28. Liang B, Tian Y, Chen X, et al. Prediction of radiation pneumonitis
with dose distribution: A convolutional neural network (CNN) based
model. Front Oncol. 2020;9:1500. doi: 10.3389/fonc.2019.01500

29. Adachi T, Nakamura M, Shintani T, et al. Multi-institutional
dose-segmented dosiomic analysis for predicting radiation
pneumonitis after lung stereotactic body radiation therapy. Med Phys.
2021;48(4):1781-1791. doi: 10.1002/mp.14769

30. Zheng X, Guo W, Wang Y, et al. Multi-omics to predict acute
radiation esophagitis in patients with lung cancer treated with
intensity-modulated radiation therapy. Eur J Med Res. 2023;28(1):126.
doi: 10.1186/s40001-023-01041-6

normal tissue complication probability modeling of xerostomia //
Front Oncol. 2018. Vol. 8. ID 35. doi: 10.3389/fonc.2018.00035

7. Conogkui B.A., HyaHos H.B., MBaHHuKkoB M.E., n ap. [lo3vioMuKa
B @HanM3e MeULMHCKVX M300paKeHUin U NepCreKTUBLI €8 UCMOoSb-
30BaHws B KMHUYeckol npakTuke // Digital Diagnostics. 2023. T. 4,
N° 3. C. 340-355. EDN: EGRWGJ doi: 10.17816/DD420053

8. Arroyo-Hernandez M., Maldonado F., Lozano-Ruiz F., et al.
Radiation-induced lung injury: Current evidence // BMC Pulm Med.
2021.Vol. 21, N 1. 1D 9. doi: 10.1186/512890-020-01376-4

9. Rahi M.S,, Parekh J., Pednekar P., et al. Radiation-Induced Lung
Injury — Current Perspectives and Management // Clin Pract. 2021.
Vol. 11, N 3. P. 410-429. doi: 10.3390/clinpract11030056

10.Yan Y, Fu J, Kowalchuk R.O., et al. Exploration of
radiation-induced lung injury, from mechanism to treatment:
a narrative review // Transl Lung Cancer Res. 2022. Vol. 11, N 2.
P. 307-322. doi: 10.21037/tlcr-22-108

11. TnagmnunHa WA, Llabaros M.A., Kpasew, 0.A., v ap. MocTnyyesble
noBpexaeHNs NErkux // OHKONOTUYECKUI ypHan: NyyeBas awar-
HOCTUKa, NydveBas Tepanus. 2020. T. 3, N® 2. C. 9-18. EDN: SKOAAY
doi: 10.37174/2587-7593-2020-3-2-9-18



https://elibrary.ru/vwoiib
https://www.rncrr.ru/nauka/dissertatsionnyy-sovet/obyavleniya-o-zashchitakh/upload 2023/Леденев_
https://www.rncrr.ru/nauka/dissertatsionnyy-sovet/obyavleniya-o-zashchitakh/upload 2023/Леденев_
https://elibrary.ru/ybwrom
https://doi.org/10.1002/pro6.1169
https://doi.org/10.5603/RPOR.a2022.0046
https://elibrary.ru/bizzhu
https://doi.org/10.20969/VSKM.2020.13(3).63-73
https://www.slicer.org/
https://doi.org/10.1016/j.ijrobp.2021.04.047
https://doi.org/10.1038/s41598-020-67499-0
https://doi.org/10.1186/s13014-014-0266-7
https://doi.org/10.1016/j.lungcan.2007.08.010
https://doi.org/10.1118/1.2759601
https://doi.org/10.3390/cancers10070222
https://doi.org/10.1186/s13014-022-02154-8
https://doi.org/10.1016/j.ijrobp.2022.08.047
https://doi.org/10.1186/s13014-021-01950-y
https://doi.org/10.3389/fonc.2019.00269
https://doi.org/10.3389/fonc.2019.01500
https://doi.org/10.1002/mp.14769
https://doi.org/10.1186/s40001-023-01041-6
https://elibrary.ru/zfchgj
https://doi.org/10.17116/onkolog20176438-41
https://doi.org/10.1016/j.ijrobp.2023.10.044
https://doi.org/10.2967/jnumed.118.222893
https://pyradiomics.readthedocs.io/en/latest/features.html#
https://pyradiomics.readthedocs.io/en/latest/features.html#
https://doi.org/10.1007/s00066-020-01625-9
https://doi.org/10.3389/fonc.2018.00035
https://elibrary.ru/eqrwgj
https://doi.org/10.17816/DD420053
https://doi.org/10.1186/s12890-020-01376-4
https://doi.org/10.3390/clinpract11030056
https://doi.org/10.21037/tlcr-22-108
https://elibrary.ru/skoaay
https://doi.org/10.37174/2587-7593-2020-3-2-9-18

ORIGINAL STUDY ARTICLES

12. HypHos H.B., CoThukos B.M., Jlepenés B.B., bapbiwxmkosa [.B.
B03MOXHOCTM KaueCTBEHHOW OLEHKM y4eBbIX MOBPEMXAEHWIA NEr-
KUX METOIOM KOMIbIOTEPHO ToMorpadum // MeamumHcKas Bu3ya-
nm3auwms. 2016, Ne 1. C. 39-46. EDN: VWOIIB

13. Jlepenés B.B. MeToouKa KOMMYECTBEHHOM OLEHKM Jly4eBbIX
MNOBPEXAEHWIA NETKMX Y OHKOMOMMYECKMX NALMEHTOB MO [aHHbIM
PEHTTEHOBCKOM KOMIMbIOTEPHOM TOMOrpadum: AMCCepTaLms Ha co-
MCKaHWe Y4EHOM CTeNeHM KaHa, Mefl. HayK. MockBa, 2023. 133 c. Pe-
¥uM poctyna: https://www.rnerr.ru/nauka/dissertatsionnyy-sovet/
obyavleniya-o0-zashchitakh/upload%202023/Nenenes_[inccepTa-
uwms.pdf [lara obpalierms: 25.11.2023. EDN: YBWROM

14. Zhou C., Yu J. Chinese expert consensus on diagnosis and
treatment of radiation pneumonitis // Prec Radiat Oncol. 2022. Vol. 6,
N 3. P. 262-271. doi: 10.1002/pro6.1169

15. Konkol M., Sniatata P., Milecki P. Radiation-induced lung injury —
what do we know in the era of modern radiotherapy? // Rep Pract Oncol
Radiother. 2022. Vol. 27, N 3. P. 552-565. doi: 10.5603/RPOR.a2022.0046
16. Wanmypatos P.W. PagnaunoHHO-MHAYUMPOBaHHbIE Mopae-
HUs nérkux. CoBpemMeHHoe cocTosHWe npobneMsl // BecTHuKk cos-
PEeMEHHOM KnHMYeckorn MeamumHel. 2020. T. 13, N2 3. C. 63-73.
EDN: BIZZHU doi: 10.20969/VSKM.2020.13(3).63-73

17. 3D Slicer image computing platform [Internet]. [nata obpatue-
Hus: 25.11.2023]. Pexxmm poctyna: https://www.slicer.org/

18. Wang L., Gao Z, Li C, et al. Computed Tomography-Based
Delta-Radiomics Analysis for Discriminating Radiation Pneumonitis
in Patients With Esophageal Cancer After Radiation Therapy //
Int J Radiat Oncol Biol Phys. 2021. Vol. 111, N 2. P. 443-455.
doi: 10.1016/j.ijrobp.2021.04.047

19. Begosh-Mayne D., Kumar S.S., Toffel S., et al. The dose-response
characteristics of four NTCP models: using a novel CT-based radiomic
method to quantify radiation-induced lung density changes // Sci
Rep. 2020. Vol. 10, N 1. ID 10559. doi: 10.1038/s41598-020-67499-0
20. Korpela E., Liu SK. Endothelial perturbations and therapeutic
strategies in normal tissue radiation damage // Radiat Oncol. 2014.
Vol. 9. ID 266. doi: 10.1186/513014-014-0266-7

AUTHORS' INFO

* Mikhail E. Ivannikov, MD;

address: 86 Profsoyuznaya str., 117997, Moscow, Russia;
ORCID: 0009-0007-0407-0953;

eLibrary SPIN: 3419-2977;

e-mail: ivannikovmichail@gmail.com

Nikolay V. Nudnov, MD, Dr. Sci. (Medicine), Professor;
ORCID: 0000-0001-5994-0468;

eLibrary SPIN: 3018-2527;

e-mail: nudnov@rncrr.ru

Vladimir M. Sotnikov, MD, Dr. Sci. (Medicine), Professor;
ORCID: 0000-0003-0498-314X;

eLibrary SPIN: 3845-0154;

e-mail: vmsotnikov@mail.ru

Elina S-A. Shakhvalieva, MD;

ORCID: 0009-0000-7535-8523;

e-mail: shelina9558@gmail.com

Vol. 5 (4) 2024

DAl https://doi.org/10.17816/DD629352

Digital Diagnostics

21. Zhao L., Sheldon K, Chen M, et al. The predictive role of plasma
TGF-betal during radiation therapy for radiation-induced lung toxicity
deserves further study in patients with non-small cell lung cancer // Lung
Cancer. 2008. Vol. 59, N 2. P. 232-239. doi: 10.1016/}.lungcan.2007.08.010
22. Chen S., Zhou S., Zhang J., et al. A neural network model to
predict lung radiation-induced pneumonitis // Med Phys. 2007.
Vol. 34, N 9. P. 3420-3427. doi: 10.1118/1.2759601

23. Jain V., Berman A.T. Radiation Pneumonitis: Old Problem,
New Tricks // Cancers (Basel). 2018. Vol. 10, N 7. ID 222.
doi: 10.3390/cancers10070222

24. Huang Y., Feng A, Lin Y., et al. Radiation pneumonitis prediction
after stereotactic body radiation therapy based on 3D dose distribution:
Dosiomics and/or deep learning-based radiomics features // Radiat
Oncol. 2022. Vol. 17, N 1. 1D 188. doi: 10.1186/513014-022-02154-8
25. Zhang Z., Wang Z., Yan M, et al. Radiomics and dosiomics
signature from whole lung predicts radiation pneumonitis: A model
development study with prospective external validation and decision-
curve analysis // Int J Radiat Oncol Biol Phys. 2023. Vol. 115, N 3.
P. 746-758. doi: 10.1016/].ijrobp.2022.08.047

26. Puttanawarut C., Sirirutbunkajorn N., Khachonkham S,
et al. Biological dosiomic features for the prediction of radiation
pneumonitis in esophageal cancer patients // Radiat Oncol. 2021.
Vol. 16, N 1. 1D 220. doi: 10.1186/513014-021-01950-y

27. LiangB, YanH, TianY., et al. Dosiomics: Extracting 3D spatial features
from dose distribution to predict incidence of radiation pneumonitis //
Front Oncol. 2019. Vol. 9. ID 269. doi: 10.3389/fonc.2019.00269

28. Liang B, Tian Y., Chen X, et al. Prediction of radiation pneumonitis
with dose distribution: A convolutional neural netwark (CNN) based
model // Front Oncol. 2020. Vol. 9. ID 1500. doi: 10.3389/fonc.2019.01500
29. Adachi T., Nakamura M., Shintani T., et al. Multi-institutional
dose-segmented dosiomic analysis for predicting radiation
pneumonitis after lung stereotactic body radiation therapy // Med
Phys. 2021. Vol. 48, N 4. P. 1781-1791. doi: 10.1002/mp.14769

30. Zheng X., Guo W., Wang Y., et al. Multi-omics to predict acute
radiation esophagitis in patients with lung cancer treated with
intensity-modulated radiation therapy // Eur J Med Res. 2023.
Vol. 28, N 1. 1D 126. doi: 10.1186/s40001-023-01041-6

0Ob ABTOPAX

* UBaHHUKOB Muxaun EBreHbeBuy;

agpec: Poceug, 117997, MockBa, yn. [MpodcotosHas, 4. 86;
ORCID: 0009-0007-0407-0953;

eLibrary SPIN: 3419-2977,

e-mail: ivannikovmichail@gmail.com

HyaHos Hukonaii Bacunbesuy, 1-p Mefl. Hayk, npodeccop;
ORCID: 0000-0001-5994-0468;

eLibrary SPIN: 3018-2527;

e-mail: nudnov@rncrr.ru

CotHukoB Bnagumup Muxaiinosuu, a-p Mefl. HayK, npodeccop;
ORCID: 0000-0003-0498-314X;

eLibrary SPIN: 3845-0154;

e-mail: vmsotnikov@mail.ru

LaxBanueBa InuHa Canp-AMUHOBHS;

ORCID: 0009-0000-7535-8523;

e-mail: shelina9558@gmail.com

762


https://elibrary.ru/vwoiib
https://www.rncrr.ru/nauka/dissertatsionnyy-sovet/obyavleniya-o-zashchitakh/upload 2023/Леденев_Диссертация.pdf
https://www.rncrr.ru/nauka/dissertatsionnyy-sovet/obyavleniya-o-zashchitakh/upload 2023/Леденев_Диссертация.pdf
https://www.rncrr.ru/nauka/dissertatsionnyy-sovet/obyavleniya-o-zashchitakh/upload 2023/Леденев_Диссертация.pdf
https://elibrary.ru/ybwrom
https://doi.org/10.1002/pro6.1169
https://doi.org/10.5603/RPOR.a2022.0046
https://elibrary.ru/bizzhu
https://doi.org/10.20969/VSKM.2020.13(3).63-73
https://www.slicer.org/
https://doi.org/10.1016/j.ijrobp.2021.04.047
https://doi.org/10.1038/s41598-020-67499-0
https://doi.org/10.1186/s13014-014-0266-7
https://doi.org/10.1016/j.lungcan.2007.08.010
https://doi.org/10.1118/1.2759601
https://doi.org/10.3390/cancers10070222
https://doi.org/10.1186/s13014-022-02154-8
https://doi.org/10.1016/j.ijrobp.2022.08.047
https://doi.org/10.1186/s13014-021-01950-y
https://doi.org/10.3389/fonc.2019.00269
https://doi.org/10.3389/fonc.2019.01500
https://doi.org/10.1002/mp.14769
https://doi.org/10.1186/s40001-023-01041-6
https://orcid.org/0009-0007-0407-0953
https://www.elibrary.ru/author_profile.asp?spin=3419-2977
mailto:ivannikovmichail@gmail.com
https://orcid.org/0009-0007-0407-0953
https://www.elibrary.ru/author_profile.asp?spin=3419-2977
mailto:ivannikovmichail@gmail.com
https://orcid.org/0000-0001-5994-0468
https://www.elibrary.ru/author_profile.asp?spin=3018-2527
mailto:nudnov@rncrr.ru
https://orcid.org/0000-0001-5994-0468
https://www.elibrary.ru/author_profile.asp?spin=3018-2527
mailto:nudnov@rncrr.ru
https://orcid.org/0000-0003-0498-314X
https://www.elibrary.ru/author_profile.asp?spin=3845-0154
mailto:vmsotnikov@mail.ru
https://orcid.org/0000-0003-0498-314X
https://www.elibrary.ru/author_profile.asp?spin=3845-0154
mailto:vmsotnikov@mail.ru
https://orcid.org/0009-0000-7535-8523
mailto:shelina9558@gmail.com
https://orcid.org/0009-0000-7535-8523
mailto:shelina9558@gmail.com

763

ORIGINAL STUDY ARTICLES

Aleksandr A. Borisov, MD;

ORCID: 0000-0003-4036-5883;

eLibrary SPIN: 4294-4736;

e-mail: aleksandrborisov10650@gmail.com
Vasiliy V. Ledenev, MD, Cand. Sci. (Medicine);
ORCID: 0000-0002-2856-2107;

eLibrary SPIN: 2791-0329;

e-mail: Ledenevvv007@gmail.com

Aleksei Yu. Smyslov, Cand. Sci. (Engineering);
ORCID: 0000-0002-6409-6756;

eLibrary SPIN: 9341-0037;

e-mail: smyslov.ay@gmail.com

Alina V. Ananina;

ORCID: 0009-0002-4562-9729;

eLibrary SPIN: 9699-7690;

e-mail: vastruhina.a.v@yandex.ru

* Corresponding author / ABTop, 0TBETCTBEHHbIN 33 MepenmcKy

Vol. 5 (4) 2024

DAl https://doi.org/10.17816/DD629352

Digital Diagnostics

Bopucos Anekcangp Anekcanaposuy;

ORCID: 0000-0003-4036-5883;

eLibrary SPIN: 4294-4736;

e-mail: aleksandrborisov10650@gmail.com
Jlepenés Bacunuii Bnagumuposuy, KaHg. Meq. Hayk;
ORCID: 0000-0002-2856-2107;

eLibrary SPIN: 2791-0329;

e-mail: Ledenevvv007@gmail.com

Cmbicnos Anekceit 0pbeBuy, KaHa. TeXH. Hayk;
ORCID: 0000-0002-6409-6756;

eLibrary SPIN: 9341-0037;

e-mail: smyslov.ay@gmail.com

AHaHbuHa AnvHa BaneHTUHOBHa;

ORCID: 0009-0002-4562-9729;

eLibrary SPIN: 9699-7690;

e-mail: vastruhina.a.v@yandex.ru



https://orcid.org/0000-0003-4036-5883
https://www.elibrary.ru/author_profile.asp?spin=4294-4736
mailto:aleksandrborisov10650@gmail.com
https://orcid.org/0000-0003-4036-5883
https://www.elibrary.ru/author_profile.asp?spin=4294-4736
mailto:aleksandrborisov10650@gmail.com
https://orcid.org/0000-0002-2856-2107
https://www.elibrary.ru/author_profile.asp?spin=2791-0329
mailto:Ledenevvv007@gmail.com
https://orcid.org/0000-0002-2856-2107
https://www.elibrary.ru/author_profile.asp?spin=2791-0329
mailto:Ledenevvv007@gmail.com
https://orcid.org/0000-0002-6409-6756
https://www.elibrary.ru/author_profile.asp?spin=9341-0037
mailto:smyslov.ay@gmail.com
https://orcid.org/0000-0002-6409-6756
https://www.elibrary.ru/author_profile.asp?spin=9341-0037
mailto:smyslov.ay@gmail.com
https://orcid.org/0009-0002-4562-9729
https://www.elibrary.ru/author_profile.asp?spin=9699-7690
mailto:vastruhina.a.v@yandex.ru
https://orcid.org/0009-0002-4562-9729
https://www.elibrary.ru/author_profile.asp?spin=9699-7690
mailto:vastruhina.a.v@yandex.ru

