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ABSTRACT

Data processing methods based on neural networks are becoming increasingly popular in medical diagnostics. They are most
commonly used to evaluate medical images of human organs using computed tomography, magnetic resonance imaging,
ultrasound, and other non-invasive diagnostic methods. Disease diagnosis involves solving the problem of medical image
segmentation, i.e. finding groups (regions) of pixels that characterize specific objects in the image. The U-Net neural network
architecture developedin 2015 is one of the most successful tools to solve this issue. This review evaluated various modifications
of the classic U-net architecture. The papers considered were divided into several key categories, such as modifications of the
encoder and decoder; use of attention blocks; combination with elements of other architectures; methods for introducing
additional attributes; transfer learning; and approaches for processing small sets of real-world data. Different training sets
with the best parameters found in the literature were evaluated (Dice similarity score; Intersection over Union; overall accuracy,
etc.). A summary table was developed showing types of images evaluated and abnormalities detected. Promising directions
for further modifications to improve the quality of the segmentation are identified. The results can be used to detect diseases,
especially cancer. Intelligent medical assistants can implement the presented algorithms.

Keywords: U-Net architecture; segmentation; computed tomography; magnetic resonance imaging; medical diagnostics;
oncology diseases.
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CpaBHUTENbHbIW aHaNU3 MoaUPUKaL UK HeUpoceTeBbIX
apxutektyp U-Net B 3apaue cerMeHTaLum
MeAULUHCKUX U300parkeHuH
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AHHOTALINA

MeToabl 06paboTkM AaHHBIX C UCMOMb30BaHMEM HEMPOHHBIX CeTel 3aBOEBLIBAIOT BCE 6OMbLUYKD NOMyNApHOCTb B obnacTu
MeAULMHCKOIM AnarHocTUkK. Hambonee yacTo Ux NpUMEHSAIOT NpW UCCNeLO0BaHUNA MeAULMHCKUX U306paXKeHuii OpraHoB ye-
NOBEKa C WUCMOMb30BaHMEM KOMMbIOTEPHOW M MarHUTHO-Pe30HaHCHOW ToMorpadum, yNbTpasByKOBbIX W UHbIX CPEACTB He-
WHBa3MBHbIX UCCNEL0BaHUIA. [IarHOCTMpPOBaHMe NaToNOTMM B TaKOM Clydae CBOAMTCA K PELLEHMI0 3a[ia4M CerMeHTaLmm Me-
LMLMHCKOr0 M306paXkeHus, To ecTb NoucKa rpynn (o6nacteit) NMKCENOB, XapaKTepPU3YIOLLMX HEKOTOpPLIE 0OBEKTHI Ha CHUMKE.
0auH 13 Hanbonee ycneLwHbIX METOAOB PeLLEHUS AaHHOM 3afa4u — pa3paboTaHHas B 2015 rofly HelipoceTeBas apXMTeKTypa
U-Net. B HacToswem 0630pe aBTOpbI MpoaHan13npoBany pasHoobpasHbie MoanduKaumMm Knaccudeckoii apxutekTtypbl U-Net.
PaccMoTpeHHble paboTbl pa3feneHbl Ha HECKOMbKO KIoYeBbIX HanpaBneHuit: MoaudUKaLmn KOAMPOBLLMKA U AEKOAWNPOBLLM-
Ka; ucnonb3oBaHue 610KOB BHUMAaHMS; KOMOUHMPOBAHME C 3NIeMEHTaMU ApYriX apXUTEKTYp; METOAbl BHELPEHUs LOMOSHM-
TesbHbIX MPU3HAKOB; TpaHChepHoe 0by4eHre 1 NOAXOAbI A51s 06paboTKM Manbix HabopoB peanbHbIX AaHHbIX. V3yyeHbl pas-
JYHble obyyatoLme Habopbl, A1 KOTOPBIX MPUBEAEHDI yuLLMe AOCTUTHYTHIE B IUTEPAType 3HaYeHWst METPUK (NoKasaTenb
cxoncrea Dice; nepeceyenne Hap 06beauHeHneM Intersection over Union; obLias TouHocTb M ap.). Takxe co3aaHa cBogHas
Tabnuua ¢ yKasaHueM TUNOB aHaNM3MUpyeMbIx U306paXeHNU 1 BbISBNSEMbIX NATONOrMIA Ha HUX. 0603HaYeHbI NepCNeKTUBHbIE
HanpaBneHus JanbHenwnX MoandUKaLmiA ANs NOBbILIEHNS KaYecTBa peLueHUs 3aAay cerMeHTaumm. PesynbTaTbl MoryT ObiTb
nonesHbl B 0611aCTH BbIABNEHWs 3ab0NeBaHuIA, NpeXae BCEro, OHKONOrUYeckux. lpeactaBneHHble anropuTMbl MOryT CTaTb
YacTbio NPodecCMOHaNbHbIX MEANLIMHCKUX MHTENNEKTYaNbHbIX aCCUCTEHTOB.

KnioueBble cnosa: apxutekTypa U-Net; cerMeHTaums; KOMNbloTepHas TOMOrpadms; MarHUTHO-pe30HaHCHas ToMorpagus;
MeAMLMHCKaA AMarHoCTMKa; OHKOJOrMYecKue 3aboneBaHus.
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INTRODUCTION

Image processing using artificial-intelligence
(Al)-based software plays a central role in modern medical
diagnosis. Advancements in computational technology
and machine learning algorithms have considerably expanded
the capabilities of image analysis in recent decades.
Comprehensive clinical decision support systems, including
autonomous models, have replaced the previous generation
of simple classification frameworks.

Medical image processing initially relied on basic imaging
modalities such as radiography and mammography. These
modalities have since evolved, and computed tomography
(CT) and magnetic resonance imaging (MRI) data are now
processed with high efficiency. In the context of diagnostic
radiology, Al-based software is applied to a range of tasks,
including data visualization, segmentation, recording,
classification, and interpretation.

Among these, medical image segmentation remains
among the most challenging tasks, as it involves identifying
clusters of pixels that correspond to specific image objects,
particularly in CT and MRI scans. Deep learning algorithms have
demonstrated promising performance in segmenting abnormal
regions (selecting target regions) and subsequently classifying
them. These algorithms notably outperform conventional
approaches in both processing accuracy and speed [1].

Ensembling
(stacking)

Input image

¥

572x572
568x568

¥ 128128

2842
2822
2807

-
N
13y
=N
o
13
&

1402
138:%

68 136:%

f el s

512 512 1024

Adding attention blocks
or components
from other architectures

Vol. 5 (4) 2024

U-Net architecture

Digital Diagnostics

Various neural network architectures have been employed
for segmentation tasks. These models differ in structural
characteristics, including the number of layers, neurons
per layer, activation functions, and optimization algorithms.
Among these architectures, frameworks such as U-Net,
V-Net, DenseNet, and Mask R-CNN have demonstrated strong
performance in segmentation tasks [2—6].

Since its introduction in 2015, the U-Net segmentation
network has become a standard tool in biomedical image
processing. Nevertheless, the basic U-Net architecture continues
to demonstrate strong performance in analyzing medical
images for detecting organ abnormalities, such as those seen
in kidney CT scans and lung changes associated with COVID-19
or obstructive pulmonary disease [7-9]. The U-Net3D
architecture extends the conventional U-Net by replacing
two-dimensional (2D) convolutions with 3D convolutions [10].
It is employed for the segmentation of 3D medical images. For
instance, Pantovic et al. used U-Net3D to analyze CT scans
of a brain containing neural implants to identify surgical sites
for epileptogenic zone removal [11]. Han et al. used the same
architecture to segment liver MRI scans and delineate both
the contours and internal structures of the liver [12].

The standard architecture of the U-Net neural network
consists of two primary components: the encoder and decoder.
The encoder compresses the input data and extracts
the most relevant features for subsequent recognition.
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Fig. 1. Classic U-Net architecture proposed in 2015 and the main categories of its modification methods.
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Segmentation tasks
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Fig. 2. Segmentation tasks categorized by the availability and type
of training data.

Meanwhile, the decoder reconstructs a segmented image
from the compressed data generated by the encoder.
Since 2015, numerous modifications to the standard U-Net
architecture (referred to as the U-architecture) (Fig. 1)
have been developed to enhance its accuracy, speed,
and robustness. These modifications can be grouped into four
main categories: (1) modifying the encoder and decoder while
preserving the overall network structure; (2) combining
multiple U-architecture models through ensembling;
(3) integrating additional architectural components, such
as attention blocks; and (4) incorporating supplementary
features into the model.

These modifications have also been applied
to address image segmentation challenges arising
during semi-supervised learning or when training data are
limited (Fig. 2). The limited-training-data scenario can be
further categorized into cases involving small and extremely
small datasets. Specifically, when training on small datasets,
transfer learning and fine-tuning are typically applied
to networks pretrained on more diverse datasets.

Meanwhile, when training on extremely small datasets
(few-shot learning), pretraining is inadequate; such cases
generally require original architectures and data models.

This review explores the application of U-Net architecture
modifications in medical image processing. Section 1 outlines
the main modification strategies for the U-architecture,
including (1) changing the encoder and decoder internally,
(2) integrating additional architectural components such
as attention blocks, and (3) altering the network’s learning
process. Section 2 explores how these modifications can
be applied to address specific challenges in medical image
segmentation. The conclusion in Section 3 summarizes
the key findings of the review.

DATA SEARCH METHODOLOGY

The authors conducted a literature search using
the Web of Science, Scopus, and PubMed databases, covering
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publications from 2018 to 2024. The search results were

comparable across databases and reflected the primary

trends in U-Net architecture modification methods. The search
keywords included U-Net, medical images, and modification.

The initial search returned approximately 5,000 sources. This

was subsequently refined using additional terms, including

attention, few-shot, unsupervised, semi-supervised, ensemble,
stack, additional features, metadata, and DICOM data.

The selected publications were reviewed with a focus
on the use of specific architectures for medical image
processing. The inclusion criteria were as follows:

+ Quality of result validation (e.g., comparison with other
architectures, use of established evaluation metrics,
and study completeness);

Originality of the architectural modification in relation

to its intended application;

« Specificity of the task (e.g., type of abnormality detected
or organ segmented);

 Use of open datasets.

The U-Net architecture has substantially impacted medical
image segmentation owing to its effectiveness. Originally
proposed by Ronneberger et al. [2], U-Net has since evolved
into several notable variants, including U-Net++ [13], Attention
U-Net [5], 3D U-Net [10], EU-Net [14], NAS-U-Net [15],
U-Net 3+ [16], and SwinAttU-Net [17]. Appendix 1 provides
an overview of key studies on U-Net modification methods
and segmentation accuracy evaluations, as well as datasets
used for testing. It also includes studies wherein U-Net
was applied to address specific segmentation challenges.
The following abbreviations are used for performance
metrics: DC, Dice coefficient; loU, intersection over union;
0A, overall accuracy [18, 19].

U-NET ARCHITECTURE MODIFICATIONS

Internal encoder and decoder modifications

This section discusses structural elements that are
altered by internal modifications to the encoder and decoder
of the U-architecture.

Encoder and decoder convolution blocks. To process
spinal cord images (Verse2019 and Verse2020 datasets),
Xu et al. replaced convolution layers with linear layers
in the encoder and with octave convolutions in the decoder.
Octave convolutions combine standard convolution blocks
with pooling operations to extract frequency-based data [57].
Ayalew et al. reduced the number of convolution channels
and incorporated batch normalization into the original
U-architecture to detect liver tumors in CT scans [58].
This modification improved network accuracy on datasets
with considerable class imbalance. Guan et al. proposed
an architecture with modified convolution blocks wherein
the outputs of each layer were concatenated and jointly
processed to minimize distortion in photoacoustic images,
such as brain scans [59].
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Connections between encoder and decoder blocks.
Ozcan et al. used a U-Net variant to identify tumor regions
in liver CT scans. In this variant, connections between encoder
and decoder blocks passed through an inception block
composed of convolutions with different kernel sizes,
whose outputs were concatenated. In other studies, these
connections passed through a pyramid of pooling layers
(consisting of multiple pooling layers with different kernel
sizes applied to the same data) [61]. This approach was
used to accelerate the segmentation of liver ultrasound
images.

Encoder or decoder regularization blocks. Omarov et al.
applied a modified U-Net architecture to detect brain regions
affected by ischemic stroke on CT scans. In this architecture,
dropout and L2 regularization layers were incorporated
into the decoder [62].

Ensembling U-Net architectures. A concatenated
ensemble of U-Net networks trained on ImageNet images
converted to sinograms was used to reconstruct CT images
from projection data obtained by rotating an object [63].
In another example, an ensemble of two U-Net3D networks
pretrained on the LiTS dataset was applied for detecting
liver tumors in 3D CT scans [24, 64]. The first network
processed low-resolution images (reduced source images),
and its segmentation output was passed to the second
network. A combined loss function incorporating the DC
and cross-entropy was used. In another study, a two-stage
U-Net ensemble was developed for liver tumor detection.
Here, one network functioned as a post-processing
and refinement stage [65].

Koirala et al. used an ensemble of U-Net3D, ONet3D,
and SphereNet3D networks to locate brain tumors.
Ensembling was achieved by weighing (summing
and multiplying by a number reflecting the network’s
contribution to the overall result, i.e., its weight) the outputs
of all models to determine the most probable class.

Li et al. used an unmodified U-Net architecture to select
the optimal model for their application [67].

Overall, existing studies suggest that even minor
architectural changes to U-Net can improve its effectiveness
in medical imaging tasks.

Modifications using attention mechanisms

This section outlines how previous studies modified
the standard U-Net architecture by integrating spatial
and channel attention blocks [68]. In one study,
a U-Net3D-based variant incorporating efficient channel
attention in the encoder blocks was applied to detect
COVID-19-related abnormalities in chest CT scans [69].
In another study, a pyramid fusion module was implemented
at the lower layer of the U-architecture. In this module,
features extracted using neural networks with varying
window sizes were concatenated, and the resulting data were
processed using a pooling layer with a global mean value.
The Tversky loss function was used for optimization [70].

5 (4) 2024
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Another study focused on the simultaneous segmentation
of multiple organs using CT scans [71]. The proposed U-Net
architecture included an attention block that took the outputs
of both the encoder and decoder as input. These outputs were
concatenated and processed using a 1D convolution operation
with ReLU activation sigmoid functions [72].

One study [73] employed a U-Net architecture with spatial
multi-scale attention blocks to segment liver tumors in CT
scans. These attention blocks were placed at multiple points
in the architecture, including within the encoder and decoder,
as well as along the connections between them.

Zhang et al. applied pyramid pooling in the lower part
of the U-architecture (corresponding to the point of maximum
data reduction) and used efficient channel attention blocks
on the connections between the encoder and decoder
blocks [74]. Another study proposed a U-Net architecture
with spatial attention between encoder blocks, incorporating
convolutions with multiple receptive fields (Fig. 3). This
architecture was trained using the Tversky loss function
for breast cancer detection [75].

Subhan Akbar et al. introduced attention blocks
into the connections between the encoder and decoder blocks
of the U-architecture. For feature extraction, they also added
a positional attention block and a self-attention block to each
layer of the decoder [76, 77].

Thus, in U-Net, various attention blocks have been used
to capture spatial relationships between image elements
at different scales. Notably, these relationships cannot be
detected using the basic architecture.

Modifications through the integration
of elements from other architectures

A common approach to modifying the U-Net architecture
involves incorporating elements from other networks,
such as ResNet or transformers. Several variations of this
approach have been proposed.

Full modification of the encoder and/or decoder.
Xingfei et al. modified the U-Net architecture by replacing

7816/0D629866




REVIEWS

the encoder with ResNet50 for segmenting COVID-19-related
abnormalities in the lungs [78, 79]. A channel attention block
combined with a pyramid pooling module was applied
following the encoder. Alternatively, a transformer encoder
can be integrated, with its output upsampled via deconvolution
for use in different parts of the U-architecture [80].

Modification of encoder and decoder blocks while
maintaining the general U-Net architecture. Eskandari
et al. focused on segmenting liver structures in CT scans [81].
To account for the considerable variability in liver shape,
size, and position, they used a position-determining classifier
network in combination with a modified U-Net architecture.
This modification replaced standard convolution blocks
with ConvLSTM blocks, which were also incorporated
into the connections between encoder and decoder blocks [82].

In another study, a hybrid architecture combining
efficient transformer blocks with the U-Net architecture was
proposed for identifying skin abnormalities in medical images
(Fig. 4) [83]. This architecture outperformed the classic
U-Net, Attention U-Net, TransU-Net, FAT-Net, and Swin
U-Net in terms of DC, sensitivity, specificity, and accuracy
on the ISIC 2018 skin lesion dataset.

Ghofrani et al. applied a combination of an unmodified
U-Net and transformer blocks to segment polyp images,
achieving higher accuracy than U-Net, ResU-Net++,
and DoubleU-Net [36, 37, 84-86].

For 3D liver image segmentation, U-Net was combined
with Swin Transformer, BTSwin Transformer, and DenseNet
components [87-89].

Vol. 5 (4) 2024
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In summary, similar to attention-based modifications,
integrating elements from other architectures enhances
image processing quality by identifying subtle relationships
between image regions. Transformer blocks that employ
self-attention mechanisms to extract latent features are
frequently used in this context.

Introducing additional features into u-net

Researchers often use metadata from DICOM files
as supplementary features in medical image analysis. These
data are typically tabulated and include both continuous
and categorical variables. The metadata are often input
into a separate network, which may be trained either jointly
with or independently from the main segmentation model.
This supplementary information is generally incorporated
into the base network using attention mechanisms. For
instance, in a previous study on spinal tumor segmentation,
metadata were integrated into a U-Net-based segmentation
model. Each block included a linear transformation block
applied to the output of the preceding convolutional layer [90].
The U-Net-based generator computed transformation
parameters (shift and scale) after receiving metadata related
to the segmented image. In another study, Du et al. proposed
a channel attention mechanism wherein metadata were
used to train the 3D-RADNet network to detect image slices
containing the target organ (liver) [91]. Slices selected using
metadata were processed by a U-Net-based segmentation
model. In kidney tumor segmentation, channel attention
has been used to incorporate metadata into the network,
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Fig. 4. Architecture integrating transformer blocks into the U-Net framework [81].
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allowing the data to serve as the outputs of U-Net
blocks [92]. After the final convolutional layer of each block,
both image data and metadata are passed to a layer where
the metadata are input into a multi-layer perceptron (MLP)
with a sigmoid activation function. The MLP outputs are
then multiplied, on a per-channel basis, with the image data
from the preceding convolutional layer.

In addition to metadata, other sources of auxiliary
information have been used to enhance U-Net models:

« A two-branch architecture based on a convolutional
network [93];

« CNNFormer for liver segmentation, which accounts
for both intra-slice spatial relationships and inter-slice
hierarchical structures [94];

+ Additional features, such as spine, lung, and skin
segmentation results obtained using the Python library
Body Navigation [95].

These data have been concatenated with the input images
to enhance the localization of the target organ. This approach
has been applied to liver CT segmentation using both U-Net
and U-Net3D architectures, depending on whether individual
slices or entire scans were processed.

Many modifications to U-Net training involve the iterative
reuse of features. For example, Ernst et al. focused
on reconstructing CT images from sinograms [96]. They
employed a combination of U-Net3D and Primal-Dual
networks with iterative learning, where the output at each

00l https://doi.org/10.]

HxWxCy,

-
Feed-Forward
network
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'HXWXI

step was combined with the results of the previous iteration.
Another study proposed a method to improve segmentation
accuracy by reusing features extracted during learning [97].
RecycleNet, an architecture derived from U-Net, comprises
three main blocks:

« |: input data block;

« R: latent feature reuse block;

+ 0: outcome block (Fig. 6).

II """ II Recycling

Module R

Fig. 6. Structural blocks of the U-Net archltecture [971.
7816/DD629866
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The feature reuse algorithm is illustrated in Fig. 6.
First, the number of iterations to be used for decision-
making is randomly selected from a predefined range.
The features extracted in the previous iteration are
normalized and added to those from the current iteration,
incorporating spatial embedding. After completing
the selected number of iterations, the network generates
the final output. In a previous study, RecycleNet was
experimentally evaluated on the KiTS 2019 (kidney cancer),
LiTS, BTCV, AMOS (multi-organ segmentation), and CHAQOS
(MRI) datasets [23, 24, 33, 40]. The proposed architecture
was compared with a DC-optimized variant of nnU-Net
and the DRU network [98]. RecycleNet outperformed
the compared architectures on all evaluated datasets.

Thus, incorporating additional features can improve
the accuracy of image processing using U-Net. Such
supplementary data often reveal patterns that are not present
or are only weakly expressed in the image itself.

ADDRESSING SPECIFIC SEGMENTATION
CHALLENGES USING THE U-NET
ARCHITECTURE

Transfer learning and fine-tuning of U-Net

In medical image processing, available training datasets
are often small and structurally complex. This limitation
arises from the difficulties encountered during data labeling
and restrictions imposed by privacy agreements. A common
approach in such cases is to employ pretrained models
and fine-tune them on the available datasets.

Heker et al. investigated liver tumor segmentation using
a small dataset of CT scans [99]. To this end, they first trained
the U-Net architecture on the LiTS dataset and applied
a hierarchical freezing strategy to its encoder weights. Initially,
the encoder weights were frozen, meaning they were not
updated during training. The rest of the network was trained

a Real-world b
Application Domain
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for a set number of iterations. Afterward, the frozen encoder
weights were gradually unfrozen and fine-tuned one by one.

Several researchers employed a U-Net architecture
with a ResNet32-based encoder, initially pretrained
on ImageNet and subsequently fine-tuned using optical
coherence tomography images [100]. Meanwhile, others
have explored fine-tuning techniques for U-Net and U-Net3D
in the segmentation of various organs and diseases,
including approaches involving a variable number of trainable
layers [101, 102].

Moreover, transfer learning with U-Net and EfficientNet
architectures—both originally developed for 2D image
segmentation—has been applied to facilitate data
transfer during 3D image processing [103, 104].
The authors of the aforementioned paper proposed
two approaches: 1) increasing the sampling rate of 2D
weights in the corresponding blocks of 3D architectures
and 2) obtaining plane projections of 3D data and subsequently
processing them using a network trained on 2D data (Fig. 7).

Another approach to training involves using U-Net for post-
processing image segmentation results. Hong et al. applied this
strategy for liver segmentation in CT scans. In their proposed
modification, U-Net's segmentation output underwent post-
processing through the optimization of an energy functional.
This functional included two components: one for contour
delineation in an image and another for optimizing voxel
class labels within the evaluated region.

The effectiveness of fine-tuning and transfer learning
strategies strongly depends on the datasets used
during pretraining. The closer the training and target datasets
are in terms of the types of objects assessed, the more
effective fine-tuning and transfer learning become. However,
achieving this similarity is not always feasible, particularly
for specialized tasks. Large datasets are often unavailable—
especially for 3D data. A promising alternative is to fine-tune
using simpler, lower-dimensional data, which are generally
easier to collect in sufficient quantities.

Real-world
Application Domain

Fig. 7. Ratios of labeled and unlabeled data in network training and testing: (a) semi-supervised learning (SSL), (b) unsupervised domain
adaptation (UDA), and (c) semi-supervised domain generalization (SemiDG) [106].
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Semi-supervised learning methods

The shortage of sufficient training data for complex
architectures is often due to the lack of expert annotation
of raw data—a task that requires substantial domain-specific
knowledge and expertise. To address this limitation, various
training strategies based on the U-Net architecture have been
developed to leverage unlabeled data and semi-supervised
learning approaches.

Wang et al. explored the training of segmentation networks
for 3D organ models using semi-supervised learning
techniques [106]. They developed a framework capable
of handling different proportions of labeled and unlabeled
data during both training and testing phases (See Fig. 7):

« Fig. 7(a): labeled and unlabeled data, as well as testing
data, are of the same type (testing data indicated
with a dotted line);

« Fig. 7(b): labeled and unlabeled data are of different types;

« Fig. 7(c): the training set contains labeled and unlabeled
data of different types, while the testing data are entirely
distinct from both.

The resulting framework consists of two main components
(Fig. 8): an aggregation block and a decoupling block.
The aggregation block includes the encoder of the proposed
Diffusion VNet, which performs image segmentation
for type 1 relationships. The decoupling block contains three
VNet decoders, each responsible for generating class labels
of a specific type. The first decoder produces labels that are
unbiased with respect to the type of labeled data, using a loss
function that combines cross-entropy and DC. These labels
are then used to generate re-weighted class labels, where
the weights are applied in a loss function consisting of the sum
of DCs across all labeled data classes. This weighting strategy
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Fig. 8. A&D framework [106].
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enhances the training effectiveness for classes that perform
poorly. The second decoder generates class pseudo-labels
for unlabeled data, which are subsequently used to train
the third decoder in an unsupervised manner.

In a previous study, the above framework was trained
using the LASeg (brain MRI), Synapse (various organs),
MMWHS, and M&Ms (heart) datasets [47-50]. Its performance
was evaluated against that of UA-MT, LMISA-3D, vMFNet,
SS-Net, and other architectures using metrics such as DC,
Jaccard index, and HD95. In several cases, the framework
demonstrated performance that was either superior to or
comparable with that of specialized architectures.

Wang et al. investigated trained network adaptation
for segmenting a small target dataset focused on polyp
detection [107]. The study evaluated a scenario wherein
the target dataset consisted of images similar to those used
for network training but lacked labels. Two techniques were
applied for training: contrastive learning and pseudo-labeling
with calibration.

In the contrastive learning phase, unlabeled images were
labeled as either positive (consistent with a given image)
or negative. Images obtained through augmentation were
treated as positive, while others were treated as negative.
A network trained on a different dataset generated
pseudo-masks for the target dataset. These predicted masks
were then used to calculate entropy and determine class
centers within the target scans.

To improve the reliability of the generated pseudo-masks,
a per-pixel calibration block was introduced. This block
incorporated previous predictions to refine the mask quality.
To evaluate the effectiveness of the proposed method in polyp
segmentation, experiments were conducted using the ClinicDB,
ETIS-LARIB, and Kvasir-SEG datasets. The proposed
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architecture was compared with other networks employing
techniques such as bidirectional learning (BDL), Fourier domain
adaptation, historical contrastive learning, and denoised
pseudo-labeling. The proposed architecture outperformed
these alternatives in terms of DC and loU variations.

Wang et al. also proposed a method for segmenting human
organ images, including those captured during surgery, using
semi-labeled datasets.

For unlabeled data processing, a dual-network
configuration was used (Fig. 9), in which two networks
with identical architectures received the same image
input. Although the networks were initialized differently,
aggregating their outputs enabled more accurate predictions
than either network could achieve independently. To avoid
distortion when assigning pseudo-labels to unlabeled data
in cases where the training dataset exhibited heterogeneous
class representations, individual class distributions were
reconstructed rather than relying on the overall data
distribution.

To align individual class densities, an exponential
moving average transformation was applied to class
alignment matrices of both labeled and unlabeled data.
The effectiveness of the proposed method was evaluated
using the CaDIS (surgical images), LGE-MRI, and ACDC (heart
disease) datasets. Its performance was compared with that
of the URPC, UAMT, CLD, and CPS architectures using the DC,
Jaccard index, and additional metrics. The proposed method
outperformed all of these architectures across the evaluated
parameters.
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Thus, a properly selected architecture enables the effective
use of unlabeled data in training U-Net-based models, even
in the presence of class imbalance.

U-Net training using extremely small sets
of real-world data

Developing Al-based software for specific medical tasks
is hindered by the challenge of assembling a sufficiently large
training dataset[109]. Inmany cases, dedicated tools are required
to process and structure text-based protocols [110-112].
Combined with the high cost of data annotation, these
challenges frequently force developers to work with limited
amounts of labeled data for machine learning. Consequently,
few-shot learning has become a widely adopted approach
in medical image processing.

A study investigated the use of CT and positron emission
tomography scans for lung cancer detection [113]. A standard
U-Net architecture without modifications was trained
using data augmentation, with additional data introduced
during both training and testing phases based on feedback
from an expert evaluating the model’s performance. A similar
approach was later applied to COVID-19 data [114]. In another
study, the encoder of the U-Net architecture was modified
using a Siamese-Net-type structure to enhance segmentation
quality. A second encoder branch was introduced; it received
the image multiplied by its corresponding mask (segment).
The weights from this branch were then combined with those
of the primary encoder branch, which processed the original,
unmodified image [115].
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Fig. 9. Dual-network architecture trained on datasets with heterogeneous class representation [108].
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In the context of medical imaging, this approach is more
frequently applied to architectures other than U-Net, which
may be due to the network’s size and the number of neurons
it contains.

CONCLUSION

The classic U-Net architecture has proven highly
effective for medical image segmentation, which explains
its widespread use and the ongoing development of various
performance-enhancing modifications. These modifications
are designed to improve the interpretation of available
data and to pool features obtained during pretraining
on diverse datasets, including those that are unlabeled. U-Net
modifications can also be categorized according to their
intended tasks—such as segmentation or the detection
of affected tissues—as well as by the types of datasets used,
particularly those representing specific diseases. Additionally,
the diagnostic accuracy of U-Net-based solutions can be
further enhanced by incorporating supplementary training
features derived from text, tabular data, or mathematical
models.

U-Net architectures are applied across a wide
range of medical image segmentation tasks, which vary
in both problem formulation and data type (various types
of images and diseases). Each task presents its own unique
challenges, making it difficult to define a single, universally
effective architecture or even a universally applicable class
of models. However, among the approaches assessed,
U-Net modifications incorporating elements from other
architectures demonstrate the strongest performance. These
hybrid models are effective for standard image segmentation
tasks—particularly when integrating transformer blocks—
as well as for situations where training data are limited, such
as through pretraining with networks of lower dimensionality
than the target data. The integration of additional features
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