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ABSTRACT

Radiomics and texture analysis is a new step inthe evaluation of digital medicalimages using specialized software and quantitative
assessment of signs invisible to the eye. The textural parameters obtained through mathematical transformations correlate
with morphological, molecular, and genotypic characteristics of the examined area.

This article reviews scientific studies on challenges and benefits of using texture analysis in diagnosis of bladder cancer.
The authors describe the practical value of this approach, and consider the challenges and potential of using it. Forty publications
published between 2016 and 2024 were selected using keywords from PubMed and Google Scholar.

Multiple studies demonstrate high accuracy of radiomics in local staging of bladder cancer, morphologic assessment
of the tumor, and prediction of long-term clinical outcomes.

Therefore, texture analysis of medical images can provide additional information to diagnose bladder cancer in uncertain cases.
Standardization of the method is currently one of the key issues to accelerate implementation of radiomics analysis in clinical
practice.
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AHHOTALINA

PanuoMWKa v TEKCTYPHBbIN aHanu3 — HOBBI LUIAr B M3y4eHUW LMQPOBbIX MeOULMHCKUX M300paeHui, 0CHOBaHHBIA Ha UC-
Mob30BaHMU CMELUanM3MpPOBAHHOTO NPOrpaMMHOro obecreveHus U KOIMHECTBEHHOW OLLEHKW HEBUAMMBIX r1a3y noKasare-
nei. N3BnexkaeMble MyTEM MaTeMaTyeckux Npeobpa3oBaHW TEKCTYPHbIE NOKa3aTeNu KOppenupyT ¢ MOpGhOorMyecKuMHm,
MOMNEKYNSAPHBIMU W FEHOTUMMYECKUMM XapaKTepUCTUKaMKW uccneayeMoii obnacTu.

B Hacroswei cTaTbe npoBeféH 0630p HayyHbIX UCCNEAOBAHNMN, NOCBALLEHHBIX BO3MOXHOCTAM U TPYAHOCTAM MPUMEHEHMS
TEKCTYPHOrO aHanW3a B AMarHOCTUKE paka MOYeBOro Mny3bips. ABTOpaMM OnKUcaHa NpaKTU4ecKas 3HaYMMOCTb JaHHOT0 MeTo-
3, PacCMOTPEHbI CIIOXHOCTW M NEPCNEKTUBLI €ro UCoNb30BaHMA. C noMoLLbio nouckoBbIx cuctem PubMed n Google Scholar
Mo KIIo4eBbIM CNoBaM 0TobpaHbl 40 nybnukauwii, u3aaHHbIx 3a nepuog ¢ 2016 no 2024 rr.

Pe3ynbTaTbl MHOrOYMCAEHHBIX MCCEA0BAHNN LEMOHCTPUPYIOT BBICOKYI0 TOUHOCTb PaMOMMKM B MECTHOM CTaJMpOBaHWM paKa
MOYEBOr0 Ny3bIps, OLeHKe MOphOIOrMYeCcKon KapTUHBI OMYX0/U W MPOrHO3MPOBaHUM OTAANEHHBIX KIIMHUYECKUX UCXOL0B.
TakuM 06pa3oM, TEKCTYPHbIA aHaN3 MeaMLMHCKUX M30bpaxeHnid cnocobeH NpefocTaBUTb AOMNOSHUTENBHYIO MHpOPMaLMIO
B IMarHOCTMKE paKa MOYEBOr0 Ny3bipsi B HEOAHO3HAYHBIX KIIMHUYECKUX ciyyasx. CerofHs cTaHaapTM3aums MeTosa ABNseTcs
O[LHOW M3 KJKOYEBbIX 334 [J1 YCKOPEHUS BHEAPEHUS PafUOMUYECKOr0 aHann3a B KIMHUYECKYI0 NPAKTUKY.

KnioueBble cnoBa: pasvoMWKa; TEKCTYPHbIM aHanW3; paK MOYEBOr0 Ny3blps; MarHUTHO-Pe30HaHCHas ToMorpadus;
KOMMbloTepHas ToMorpadus.
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DIFFICULTIES IN DIAGNOSING
BLADDER CANCER WITH
CONVENTIONAL IMAGING
AND THE ROLE OF RADIOMICS

Accurately predicting muscle invasion is essential
for determining an appropriate treatment approach. Magnetic
resonance imaging (MRI) with intravenous contrast serves
a critical role in the noninvasive diagnosis and staging
of bladder cancer. The Vesical Imaging-Reporting and Data
System (VI-RADS) is a standardized framework widely
applied for interpreting MRI findings during local staging
of bladder cancer [1].

Despite advances in multiparameter imaging and enhanced
imaging techniques, assessing the extent of local disease
remains difficult. Staging tumors based on MRI findings
is particularly challenging when the lesion is located
in the bladder trigone, urethral neck, or urethral orifice due
to the complex anatomy of these regions. Patients classified
as VI-RADS 3 present the greatest uncertainty regarding
tumor grade. For instance, morphological assessments
in this group revealed absence of muscle invasion in 53%
of cases and presence of muscle invasion in 47% [2].

The reliability of morphological evaluations obtained
through invasive diagnostic procedures heavily depends
on the quality of transurethral resection (TUR) of the tumor.
Incomplete resection and coagulation-related tissue damage
during TUR contribute to the risk of understanding.
A systematic review reported that up to 32% of patients
experienced disease upstaging and were subsequently
diagnosed with muscle invasion following repeat [3].
Furthermore, up to 50% of specimens collected after an initial
TUR lacked a muscle layer [2].

The tumor risk category, which partially relies on tumor
grade, guides the selection of adjuvant chemotherapy
regimens for non-muscle-invasive bladder cancer.

Texture analysis (TA) has emerged as a promising
method to enhance the accuracy of bladder cancer staging
and address limitations associated with conventional invasive
and noninvasive diagnostic approaches.

PROCEDURE AND PRACTICAL ASPECTS
OF TEXTURE ANALYSIS

TA is a technique for postprocessing digital medical images
that utilizes specialized software to extract texture features
(TFs). Several TA software programs have been developed,
including PyRadiomics, MaZda, MATLAB, 3D Slicer, and LIFEx.

TA involves a sequence of stages:

» Stage 1: acquisition of medical images and storage
in the Digital Imaging and Communications in Medicine
format

 Stage 2: selection of the region of interest (ROI) and image
segmentation
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 Stage 3: extraction of TFs
» Stage 4: statistical analysis using predictive models

followed by model testing [4]

Segmentation may be performed manually,
semi-automatically, or automatically and can involve either
a single slice (2D ROI) or the entire region of interest
(3D RQI). The extracted TFs and study outcomes are closely
influenced by image quality and segmentation accuracy.
The presence of artifacts or specific morphological features
(such as calcifications, hemorrhages, or coagulation areas)
within the ROI, or analysis extending beyond the ROI, can
affect the results [5].

Image preprocessing is an intermediate step
between segmentation and TF extraction. This optional process
is intended to homogenize images, which is particularly
important when dealing with heterogeneous datasets resulting
from the use of different imaging equipment and parameters.
A wide range of image preprocessing techniques is available.
The most commonly used methods include the following [5]:
« Interpolation to achieve isotropic voxels
+ Intensity level filtering
+ Sampling of cell (bin) number and width
« Application of various filters (such as Laplace—Gaussian

and wavelet filters)

Image preprocessing plays a crucial role in standardizing
and enhancing the reproducibility of TFs [6-8].

The extracted TFs are generally categorized into several
groups. First-order features refer to histogram-based
characteristics that describe the distribution of voxel
intensities within an image. These include kurtosis, entropy,
skewness, intensity, skewness ratio, and uniformity.
Second-order features are derived from the relationships
between voxels within the ROl and describe the spatial
distribution of gray-level intensities, using matrices such
as the Gray-Level Run Length Matrix, Gray-Level Zone Length
Matrix, Gray-Level Co-Occurrence Matrix, and Neighborhood
Gray-Level Difference Matrix. Higher-order features are based
on specific mathematical transformations, such as wavelet
filtering and Fourier transforms [4].

In clinical practice, TA is applied across various imaging
modalities, including computed tomography (CT), PET/CT,
X-ray, MRI, and ultrasound. Most studies have investigated
the role of radiomics in cancer management for the following
objectives [5]:

« |dentifying the type of neoplasm (benign or malignant)

 Evaluating the tumor’s morphological and biological
characteristics (grade, invasiveness)

« Comparing the tumor’s texture profile with its genetic
profile (radiogenomics)

+ Monitoring the response to treatment

Most researchers agree that TA can enhance
the effectiveness of localization diagnosis in cancer. Combined
predictive models that incorporate TFs along with clinical,
laboratory, genetic, and histological data can support
personalized patient assessments [9, 10].
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TA, similar to a virtual biopsy, is used to assess tissue
heterogeneity [11, 12]. However, traditional biopsy assesses
heterogeneity in a specific anatomical site, which may offer
limited diagnostic value due to the low number of sampled
cells. In contrast, radiomics enables noninvasive analysis
of the entire tumor. Additionally, radiomics can help predict
overall survival and treatment response [13-16].

TEXTURE ANALYSIS OF MRI IMAGES
FOR BLADDER CANCER DIAGNOSIS

In recent years, radiomics has been increasingly applied
to the interpretation of MRI findings and the identification
of new characteristics and clinically relevant data in bladder
cancer. Most published studies on radiomics in bladder
cancer focus on identifying TFs that can predict muscle
invasion and tumor grade. A three-dimensional ROI (3D ROI)
is the preferred segmentation approach among most
researchers. The findings of key studies on the TA of MRI
images in bladder cancer are summarized in Appendix 1.

Radiomics shows greater effectiveness in bladder cancer
diagnosis when combined models incorporating TFs, clinical
(morphological) variables, and data from multiple MRI
sequences are used [17-19]. For instance, Xu et al. conducted
TA on three MRI sequences: T2-weighted imaging (T2ZWI),
diffusion-weighted imaging (DWI), and apparent diffusion
coefficient (ADC) maps. Their analysis demonstrated that
a model integrating T2WI and DWI TFs was the most effective
in distinguishing muscle-invasive from non-muscle-invasive
bladder cancer, achieving an area under the curve (AUC)
of 0.98, accuracy of 96.3%, sensitivity of 92.6%, and specificity
of 100% [18]. Subsequently, Xu et al. reported that combining
TUR results with TFs further increased the sensitivity
for predicting muscle invasion to 0.96 [17].

Published data indicate that final predictive models
capable of differentiating muscle invasion and tumor grade
generally incorporate both first- and second-order TFs
[20, 21]. However, some studies have concentrated exclusively
on histogram features as key TFs [22-24].

Razik et al. reported that only two first-order features—
the mean value of positive pixels and kurtosis—extracted
from non-preprocessed images were effective in distinguishing
high-grade from low-grade tumors. Contrary to expectations, no
predictive features were identified when using Laplace-Gaussian
filters. Additionally, the study did not identify any TFs capable
of differentiating muscle-invasive from non-muscle-invasive
bladder cancer. Possible explanations include the use
of two-dimensional (2D) segmentation, analysis limited to ADC
images, a small sample size (40 observations), standardized
machine learning classifiers, and variability in MRI scanners
and study protocols [24].

Segmentation can be performed using various
methods. Zheng et al. were the first to segment both
the tumor and its base. A 3D analysis of T2WI identified
23 discriminative features distinguishing muscle-invasive
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from non-muscle-invasive bladder cancer, with 10 (43%)
of these features in the tumor base. The AUC for the training
and test samples was 0.913 and 0.874, respectively. When
tumor size (a morphological parameter) was added to the TFs,
the AUC slightly improved to 0.922 and 0.876, respectively [21].

Lim et al. assessed data from 36 patients to compare
the effectiveness of T2WI and ADC TA for local disease
staging. Notably, the study employed two 2D segmentation
approaches: the tumor and the adjacent paravesical fat [23].
Multivariate regression analysis showed that entropy was
the only feature with significant differences between <T2 and
=T3 tumors, as well as between T1 and >T2 tumors. Unlike
the findings of Razik et al., the agreement rates for TFs in this
study were not influenced by the use of Laplace—-Gaussian
filters. The authors concluded that entropy correlates directly
with tumor heterogeneity and aggressiveness and that TA can
be applied for local staging of bladder cancer. Limitations
of the study included MRI scans performed on all patients
after TUR, as well as variations in magnetic field strength
between the scanners (1.5 and 3 T) [23].

TEXTURE ANALYSIS OF CT IMAGES
FOR BLADDER CANCER DIAGNOSIS

The role of CT in assessing the extent of tumor spread
beyond the bladder is limited. CT scans remain primarily used
for detecting distant metastases. However, some recent large
studies have explored the application of TA in diagnosing
bladder cancer.

Cui et al. used TFs from the venous phase as prognostic
markers for muscle-invasive bladder cancer. The study
included data from 188 patients, divided into training and test
samples. The accuracy of the model was 0.98 [25].

Similarly, Zhang et al. assessed 196 CT scans
during the nephrographic phase. The authors used axial scans
for 3D segmentation, selecting the largest tumor for analysis
when multiple tumors were present. A total of 851 TFs were
extracted for each tumor. Ultimately, 12 first-order (original_
shape_Sphe-ricity, original_shape_Elongation, original_
shape_Least-AxisLength) and second-order TFs were chosen
for the models. The authors concluded that the risk of muscle
invasion was higher in spherical tumors. Three models were
developed: clinical, radiomics, and combined. The combined
model was the most accurate for predicting muscle invasion,
with an AUC of 0.89, whereas the radiomics model also
performed well, with an AUC of 0.85. The combined model
incorporated radiomic attributes (RadScore) and tumor grade
(high-grade/low-grade) [26].

In contrast to previous studies, Ren et al. investigated
the potential of radiomics analysis of CT urograms, alongside
excretory phase evaluation. The authors analyzed 296 images
after preprocessing with a fixed voxel size (1 x 1 x 1 mm?)
and pixel size scaling to 0.1. The artificial neutral network-based
model showed a sensitivity of 0.89 and specificity of 0.93
in diagnosing muscle-invasive bladder cancer [27].
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Jing et al. conducted multiphase TA of 204 thick-slice
CT scans. The authors used 54 features from the native,
corticomedullary, and nephrographic phases (8 first-order
features, 3 shape features, and 43 second-order features)
to differentiate between low-grade and high-grade bladder
cancer, achieving an AUC of 0.79, accuracy of 0.71, sensitivity
of 0.68, and specificity of 0.73. Additionally, three models
were developed based on the analysis of each phase
individually, with the following results: AUCs of 0.70, 0.74,
and 0.75 for the native, corticomedullary, and nephrographic
phases, respectively. To enhance efficacy, the authors created
a combined clinical and radiomics model, which outperformed
the radiomics-only model (AUC 0.90, accuracy 0.79, sensitivity
0.81, specificity 0.77). Based on logistic regression, the combined
model included two independent predictors of bladder cancer
grade: the patient’s age and RadScore. Limitations of the study
included the use of thick CT slices (5-6 mm) and the absence
of image preprocessing, which could have led to lower AUC
values in models based solely on TFs [28].

TEXTURE ANALYSIS FOR PREDICTING
RESPONSE TO TREATMENT

AND LONG-TERM OUTCOMES

IN PATIENTS WITH BLADDER CANCER

Despite advancements in endoscopic imaging (such
as photodynamic diagnosis and narrow-band imaging)
and improved surgical methods, the prognosis for patients
following cystectomy remains poor, with an overall 5-year
survival rate of about 60% [29].

Two models are commonly used to assess the risk
of relapse and progression in non-muscle-invasive bladder
cancer after a macroscopically complete TUR. These are
the European Organization for Research and Treatment
of Cancer and Club Urologico Espafiol de Tratamiento
Oncologico (CUETO) [30, 31] classifications. However, these
models, which rely on clinical and histological parameters,
have limitations, such as low discriminative ability
for predicting relapses and a tendency to overestimate risk.

Currently, there is no reliable method for predicting
the response to neoadjuvant chemotherapy (NACT) before or
during treatment.

These issues highlight the need for research into radiomics
as a novel approach for assessing clinical outcomes in bladder
cancer. ldentifying up-to-date prognostic markers is crucial
for more accurately selecting patients likely to respond
to NACT, particularly due to the high toxicity of cisplatin,
a chemotherapy drug recommended for treatment.

Several studies have explored the potential
of TA in monitoring therapy [32, 33]. Cha et al. were the first
to investigate the use of radiomics to predict the response
to NACT in bladder cancer. The authors analyzed CT scans
from 82 patients before and after three chemotherapy
cycles, with the model achieving an accuracy of 0.7. Although
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the analysis was based on follow-up CT scans after three
chemotherapy cycles, the authors suggest that trained
models could be applied at any clinically significant time point
to facilitate timely treatment adjustments or discontinuation,
before toxic effects occur [34].

Cai et al. developed a nomogram to predict relapse-free
survival in patients after partial or complete cystectomy.
The study included data from 80 MRI scans, analyzing four MRI
sequences (T2WI, DWI, ADC, and post-contrast images) [35].

LIMITATIONS, CHALLENGES,
AND PROSPECTS FOR RADIOMICS

The absence of a standardized and unified workflow
hinders the broader clinical application of TA [34, 36].
A study assessing the reproducibility of MRI TFs found
that the preprocessing settings needed for reliable feature
extraction may vary depending on the MRI sequence [37].

Segmentation is a crucial and debated aspect of radiomics.
Semi-automatic segmentation is generally preferred
over manual segmentation due to its better reproducibility of TFs
and faster analysis time. The reproducibility of segmentation
is mainly influenced by the tumor type and location [38].

The reproducibility of specific TFs or groups of TFs can
differ based on the image standardization method used [39].

TF agreement rates can vary by software, which limits
the interchangeability of software tools. Specialized software
packages may be designed to analyze specific pixel ranges or
tissue types; therefore, images outside the defined analysis
framework may not accurately reflect the tissue texture [40].

CONCLUSION

Radiomics is an emerging noninvasive diagnostic tool.
In urologic oncology, it shows promise for local disease
staging, tumor grade assessment, and long-term prognosis.
However, before routine clinical implementation, multicenter
randomized studies are necessary.
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