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AHHOTALUNA

MoAxXoAbl K AMArHOCTMKE U NIEYEHUHO paKa NPeACTaTeNlbHON }enesbl 0MMpaloTCs Ha KOMBMHALMIO JaHHbIX MarHUTHO-pe-
30HaHCHOM TOMOTPaduM 1 TMCTONOMUYECKUX LaHHbIX.

Lenb naHHoro 063opa — BBeAEHUE YUTATENSA B OCHOBBI COBPEMEHHOMO AMArHOCTUMECKOTO NOAX0AA K paKy NpeAcTaTesib-
HOM 3Kenie3bl NpY NOMOLLW MarHUTHO-Pe30HAHCHOM ToMorpaduy ¢ GOKYCOM Ha TEKCTYPHbIA aHaM3 LMGPOBbIX MeAULIMHCKUX
“30bpaxeHuin.

TeKCTypHbI aHanu3 No3BosieT OLEHUTb B3aUMOCBSA3N MEXAY MUKCENSMU M30BpaKeHns C NOMOLLbI0 MaTeMaTUYecKuX
MeTO[0B, YTO AAET JOMONHMTENbHYK MH(OPMaLWIO, B NEPBY0 04epesb 0 BHYTPUOMYXONEBOW reTeporeHHOCTU. TeKCTYpHbIN
aHanu3 Npu3HaKoB NEepBOro NOPSAKA MOXET UMETb BOMbLLYI0 KIMHUYECKYH BOCMPOM3BOAMMOCTb, YEM TEKCTYPHbIE XapaKTe-
PUCTUKM Bonee BbICOKOro nopaaKa. TeKCTypHble 0COBEHHOCTH, U3BNIEYEHHBIE M3 KapT Ko3adduumeHTa anddy3um, nokasanm
HanBOMbLLYK KITMHUYECKYI0 3HAYUMOCTb.

Bynywme uccnenoBaHua DOMKHbLI 6bITh HanpaBieHbl HA MHTErPaLMI0 METO0B MaLLMHHOIO 0ByyeHus ans obnerdyenus
MCMO/b30BaHMS TEKCTYPHOTO aHanM3a B K/MHUYECKOW npakTuke. Tpebyetcs pa3suTie aBTOMaTU3WPOBaHHBIX METOAOB Cer-
MEHTaLUMU N1 YMEeHbLUEHUs BEPOSTHOCTW BKIIIOYEHUS HOPMaJibHbIX TKaHel B 00/1acTU MHTEpeca U YCKOPEHUS MOJTyYeHus
pe3ynbTaToB aHanu3a. [lng npoBepKu AMarHoCTMYECKOro NoTeHLMana TEeKCTYPHBIX NPU3HAKOB TpebyloTca KpynHble nMpocrek-
TUBHbIE UCCNEL0BaHMS.

KnioueBble cnoBa: paK npefcTaTesibHOM XKese3bl; MarHUTHO-pe3oHaHcHas ToMorpadus; MPT; pagvoMuka.
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ABSTRACT

Diagnostic and treatment approaches in prostate cancer rely on a combination of magnetic resonance imaging and histo-
logical data.

This study aimed to introduce the basics of the current diagnostic approach in prostate cancer with a focus on texture ana-
lysis.

Texture analysis evaluates the relationships between image pixels using mathematical methods, which provide additional
information. First-order texture analysis of features can have greater clinical reproducibility than higher-order texture features.
Textural features that are extracted from diffusion coefficient maps have shown the greatest clinical relevance. Future research
should focus on integrating machine learning methods to facilitate the use of texture analysis in clinical practice.

The development of automated segmentation methods is required to reduce the likelihood of including normal tissue in
the area of interest. Texture analysis allows the noninvasive separation of patients into groups in terms of possible treatment
options. Currently, few clinical studies reported on the differential diagnosis of clinically significant prostate cancer, including
the Gleason and International Society of Urological Pathology grading. Large prospective studies are required to verify the
diagnostic potential of textural features.
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INTRODUCTION

For early diagnosis of prostate cancer, a prostate-
specific antigen test is used. With an increase in its level,
digital rectal examination and magnetic resonance imaging
(MRI) are recommended. The prostate-specific antigen
test is not recommended as a population-screening test
because it is considered insufficiently specific or sensitive
to detect clinically significant prostate cancer [1]. Transrectal
ultrasound-guided biopsy is the most common method
of morphological verification; however, this method has
several limitations, including the high risk of infection and
hemorrhage and difficulties in accessing the anterior gland,
especially with an increase in its volume. Prostate cancer
is considered clinically significant if at least one lesion with
a score of 3 + 4 on the Gleason scale is detected; a small
Gleason 3 + 3 lesion is considered clinically insignificant [2].

Multiparametric MRI before biopsy increases the probability
of detecting clinically significant prostate cancer from 26% to
38% compared with transrectal ultrasound-guided biopsy [2].

The PROMIS study has shown that in one-fourth of men,
MRI helped avoid unnecessary biopsies [3]. The use of the
Prostate Imaging—Reporting and Data System (PI-RADS),
created as part of an international collaboration between the
American College of Radiology and the European Society of
Urological Radiology (ESUR) [4], has become widespread.

With clinical practice transferring to pre-biopsy MRI of
the prostate gland as the standard of medical care, there
is growing interest in the possibility of using radiomics to
improve the diagnostic accuracy of prostate MRI.

Radiomics enables the extraction of quantitative indicators
from a diagnostic image, which can be analyzed to obtain
prognostic information [5]. These quantitative indicators can
provide important insight into the phenotype of prostate
cancer and potentially help make a diagnosis and improve
the assessment of response to treatment [6].

DIAGNOSTICS OF PROSTATE CANCER
Pathomorphology

Most validation studies on texture analysis in prostate
cancer have used the traditional Gleason system as a
reference. This system is based on five main assessments
of the histological structure of prostate tissue [7]. In 2014, the
International Society of Urological Pathology (ISUP) simplified
the Gleason scale to more accurate prognostic groups (from
ISUP 1 to ISUP 5). The most important amendment was the
division of the Gleason sum of 7 into two prognostic groups
(i.e., 3+ 4 and 4 + 3); in future validation studies, comparing
the results of texture analysis with pathological changes
according to ISUP is recommended.

Multiparametric MRI

MRI of the prostatic gland is the most widely used
method for clarifying the diagnosis of prostate cancer.
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The main techniques include T2-weighted and diffusion-
weighted imaging, dynamic contrast enhancement, and MR
spectroscopy.

Using T2-weighted images, the zonal structure of the
prostate gland can be differentiated. If the peripheral zone
(PZ) contains a tumor node, it will look similar to an area with
low signal intensity [8]. The main problem is that low signal
intensity can also be registered in benign abnormalities,
such as prostatitis, fibrosis, and hemorrhage after biopsy [1].
The advantage of T2-weighted images is the ease of data
collection and lower susceptibility to artifacts than functional
sequences [9].

Tumor vascularization is assessed using T1-weighted
images using an intravenous gadolinium-based contrast
agent [1]. The walls of the vessels in the tumor are more
permeable, due to which extravasation of the contrast agent
is noted in tumors [8]. With dynamic contrast enhancement,
quantitative indicators, such as volumetric transfer coefficient
(Kyans) @nd extracellular volume (Ve), can be extracted.
Kians describes microvascular permeability and blood flow,
whereas Ve describes the extravasation volume [1]. As a
rule, tumors show early contrast enhancement, followed
by a washout effect. As in the case of T2-weighted images,
contrast enhancement can also correspond to benign
processes, such as prostatitis and benign hyperplasia
nodules. Simultaneously, dynamic contrast enhancement is
extremely important in the search for residual or recurrent
tumors after prostatectomy [1].

Diffusion-weighted images reflect the Brownian motion
of water molecules in tissues [10]. The data obtained
help estimate the level of water diffusion in tissues. For
quantification, a measured diffusion coefficient (MDC) is
used [1]. Several studies have presented a significant inverse
relationship between the MDC values and the Gleason scale
in tumors of the PZ of the prostate gland [11]. Diffusion-
weighted images are considered the most important for the
differential diagnosis of tumors of the PZ of the prostate
gland [1]. Thus, when performing prostate MRI, T2- and
diffusion-weighted images are the most informative for the
detection and differential diagnosis of tumor foci in the PZ.

The PROMIS study has shown that MRI of the prostate
gland is more sensitive than biopsy in detecting clinically
significant tumors but less specific [3]. One of the main
limitations of prostate MRI is the differences in imaging
quality between centers. Although the PI-RADSv2 data
assessment system has helped standardize the interpretation
of prostate MR, it has been less successful in ensuring the
accuracy and reproducibility of the data obtained [1]. Texture
analysis can be used to solve this problem.

Texture analysis

Radiomics is a developing field that involves the
conversion of digital medical images into retrievable image
quantitative indicators based on signal intensity, shape,
volume, and textural characteristics of lesions, for assessing
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Table 1. The definitions of first-order textural characteristics
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Textural characteristics |

Definition

Mean

Standard deviation
average values

The average value of the signal intensity of the pixels in the region of interest
Deviation of the signal intensity of the pixels in the region of interest compared with the

Skewness of the signal intensity distribution in pixels in the region of interest

The height and sharpness of the central peak of the histogram compared with the normal

The number of different variants of pixel signal intensities in the region of interest

Skewness (on the histogram)

Kurtosis distribution curve

Entropy

Energy The degree of image uniformity

Average positive pixels

The average number of positive pixels (which are brighter than the average pixel)

intratumoral heterogeneity [12]. Texture analysis enables the
evaluation of the patterns of signal intensity, which can be
used to quantify suspicious areas. In oncological imaging,
there is a growing interest in texture analysis and radiomics
due to the possibility of extracting additional quantitative
data from standard medical images, which can improve
the accuracy of diagnostics and clinical decisions [13].
Texture analysis uses mathematical methods to estimate
the intensity of gray color and the location of pixels in an
image [14]. First-order texture analysis, otherwise known as
histogram analysis, extracts the intensity values of the pixels
in the area of interest, which are then displayed graphically
[5]. Simplified texture analysis involves the initial adjustment
of an image by applying fine, medium, and coarse filters
to the image, allowing the extraction and quantification of
image characteristics invisible to the naked eye in terms of
unevenness and brightness. Moreover, medium and coarse
filters enhance vascular structures and other discriminatory
signs in the image*. Based on the histogram, metrics are
calculated, including uniformity, dispersion, symmetry,
and randomness of pixel intensity values within the region
of interest [15]. The most common characteristics of the
histogram, which are given in published sources, are the
mean, standard deviation, skewness, kurtosis, entropy, and
energy [5] (Table 1).

A more complicated radiomic analysis of image aspects
investigates the relationships between pixels within a region
of interest. More information on the intensity variability of the
pixel signal in smoother, more uniform areas that have less
texture variability or more heterogeneous areas that have
greater texture variability can be obtained.

Second-order statistics, also called Haralick features,
compare the relationship between two pixels, whereas higher-
order texture analysis compares the relationship between
more than two pixels. Second-order functions are based
on gray-level co-occurrence matrix (GLCM). Colloquially

speaking, they describe the frequency of occurrence of a gray
tone in an image in a spatial relationship with another gray
tone [16]. Higher-order functions are based on neighborhood
gray-tone difference matrix (NGTDM) or gray-level run length
matrix [17]. GLCM indicates the spatial relationship between
three-dimensional pixels (voxels) in a certain direction
and the properties of uniformity, randomness, and linear
dependence of the image. NGTDM is based on differences
between neighboring voxels [18]. The signs most commonly
mentioned in published studies include energy, homogeneity,
contrast, GLCM entropy, and correlation [15].

Segmentation

Figure 1 illustrates a simplified workflow demonstrating
the path to implementing texture analysis in clinical practice.
This entails several key steps [5], which are detailed below.

Accurate segmentation of the tumor is a critical initial
step in the workflow. The work of E. Scalco and G. Rizzo [15]
has shown that all characteristics of the histogram and matrix
are affected by the segmentation method. The inclusion of
healthy tissues in the segmentation region can affect the
results of texture analysis.

Prostate cancer, similar to any other tumors, most
often has poorly defined boundaries, which can hinder
manual segmentation. Most published studies evaluating
textural analysis of the prostatic gland have used manual
segmentation based on a single axial image. A more
advanced method is the segmentation of the entire tumor
volume [19].

An important methodological approach is layer-by-
layer comparison of pathomorphological data and radiation
diagnostic images, which is difficult to implement in
segmentation based on a single axial image. The quality
of the MR study, namely, the planning of sections with
the same geometry, is also important for correct textural
analysis. However, there is little evidence yet on the value

* TexRAD. Quantitiative textural analysis. Available from: https://fbkmed.com/texrad-landing-2.
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Fig. 1. Radiomics workflow model based on T2-weighted images in prostate cancer

of automated segmentation techniques for whole tumor
evaluation in prostate cancer, and this should be evaluated
in future prospective studies.

Software packages

Various open-source and commercial software packages
are available for texture analysis of visualization data. In their
recent review, R.T. Larue et al. [18] have provided a detailed
overview of various software packages, including information
on the types of imaging techniques supported, image
preprocessing steps, and feature extraction. The LIFEx open-
source software package is widely known, which allows for
multimodal radiometric analysis of medical images.

The two main commercial software packages, TexRAD
and RADIOMICS, use the Laplacian of Gaussian filter as part
of image and function preprocessing, which can significantly
reduce the image noise level, making detecting areas of
signal intensity variation possible [20].

Preprocessing is important, as it allows correcting
magnetic field inhomogeneities and normalizing the signal
intensity both in a particular study and in a dataset [18].
Unfortunately, data to support the benefits of one software
package over others are currently inadequate.

Texture analysis in the diagnosis of peripheral
cancer

The largest patient cohort studied to date (n = 147)
has assessed the potential value of texture analysis for
the differential diagnosis of clinically significant peripheral
prostate cancer and benign lesions in two studies. D.
Fehr et al. [21] have used the same cohort of patients
as A. Wibmer et al. [16] but increased the proportion of
assessed segments of the transition zone and the number
of identified textural characteristics. GLCM entropy and
correlation extracted from T2-weighted images showed
significant differences between benign and malignant
tumors in both studies. All textural characteristics extracted
from diffusion-weighted images showed a high significance

DOI: https://doi.org/10.17816/DD70170

level, leading to the recommendation of using first- and
second-order statistics in diagnosing clinically significant
peripheral prostate cancer [21].

Texture analysis in the diagnosis of cancer of the
transitional zone

Additionally, numerous studies have reported conflicting
results regarding texture analysis of transient zone (TZ)
cancer. Thus, A. Wibmer et al. [16] did not reveal significant
differences in the textural characteristics of diffusion-
weighted images between tumors in the PZ and those in
the transition zone. An example of entropy estimation is
presented in Figure 2.

In T2-weighted images, only correlation and contrast
were significant characteristics in both TZ and PZ texture
analysis [16]. In their work involving 26 patients, H.S. Sidhu
et al. [22] have revealed that kurtosis and entropy extracted
from diffusion- and T1-weighted images were significant
tumor predictors. The values of kurtosis decreased after
resection of the tumor focus from the cut.

Textural analysis in the characterization
of clinically significant prostate cancer

Few studies have explored the potential value of textural
analysis in predicting the grade of prostate cancer. Few
researchers have reported that textural characteristics
correlate with the Gleason scale [23]. In their works, A.
Wibmer et al. [16] have indicated that characteristics extracted
from diffusion-weighted images can reliably distinguish
lesions with a Gleason score of 6 from those with a Gleason
score of 7, but not 3 + 4 lesions from 4 + 3 lesions. These
preliminary results could conclude that textural analysis can
detect a tumor and differentiate it from a benign process;
however, the assessment of the focus pathomorphology can
be difficult.

Recently, the systematic review by P.S. Sierra et al. [24]
involving numerous studies has examined the usefulness of
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Fig. 2. Segmentation and evaluation of the entropy of the tumor focus of the transition zone of the prostate

Note. a, Map of the measured diffusion coefficient (MDC) of magnetic resonance imaging (MRI) of the prostate gland of a 65-year-old
patient with a prostate tumor (Gleason 3 + 4) shows an area of reduced MDC (red outline; posterior segment of the transition zone
of the middle part of the left lobe of the gland). Prostate biopsy performed 6 days after MRI; b, a heat map of a normalized textural
characteristic (entropy); c, diffusion-weighted image (DWI), b-factor 900 mm/s?, pathological focus is not visualized; d, DWI, calculated
b-factor 1400 mm/s?, pathological focus is not visualized; e, T2-weighted image, the pathological focus is not visualized.

selected clinicopathological predictors of histopathological
progression in patients under active monitoring. However,
none of the models under study has been implemented in
routine clinical practice due to their low predictive accuracy.
One possible explanation for this is the inherent difficulty in
standardizing the predictors used, with an obvious example
of the prostate-specific antigen density, which varies greatly
depending on the imaging method used to measure the
prostate volume [25]. In contrast, the ability of MRl to visualize
the entire volume of the tumor, combined with ongoing
attempts to standardize imaging parameters [26], is the basis
for studying the ability of quantitative characteristics to act as
accurate and reproducible predictors of disease progression.

In prostate cancer, a significant amount of research in
the field of radiomics is aimed at improving the detection of
a clinically significant disease [14, 27] to solve the problem
of overdiagnosis of the latent oncological process [28].
Radiomics models have been developed for preoperatively
predicting the probability of extracapsular extension [17, 29],
which is important for accurate local staging of the disease
and clinical decision making.

DOl https://doi.org/10.17816/DB70170

Methodological limitations of texture analysis

Retrospective studies are more prone to bias and
confusion of variables, which can affect statistical processing
and introduce errors in interpreting the results, leading
to erroneous conclusions. The heterogeneity of studies
makes ensuring reproducibility difficult, so large datasets
are required to address this issue. E. Sala et al. [6] have
recommended using informatics and analytics to form
common datasets and ensure large sample sizes. In practice,
this can be difficult to achieve due to data protection laws
and infrastructure costs. Most studies conducted to date
represent single-center pilot trials with small sample sizes
and different methods of data collection and image texture
analysis, which hinders the comparison of the results and
explains the low reproducibility of the results.

A more significant problem is the imbalance of classes,
that is, extracting more characteristics than the number of
participants. Testing many textural characteristics requires
statistical correction to eliminate the first-type error (false
discovery). The use of complex regression models to search
for significant characteristics increases the risk of data
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oversampling [30]. Regression models may show effective
results in one study but are unlikely to be replicated in other
studies. Using only one textural characteristic per 10 patients
in multiple regression models reduces the risk of overfitting
in future studies.

The future of prostate cancer radiomics

Prostate radiomics is a rapidly developing field where
early research was initially focused on tumor localization.
A review of studies in the field of radiomics of the prostate
gland enables the identification of patterns of development
and promising fields of textural analysis. Let us consider
three key aspects of the direction of development of prostate
gland radiomics, namely, the aspects of data collection, their
analysis, and the relationship with biological markers.

The use of radiomics in prostate cancer has evolved from
macroscopic to microscopic levels. The highest stage in the
development of radiomics is the individual prediction of the
risks and results of treatment in a particular patient. An
initial milestone is considered the study of MR spectroscopy
in assessing the risk of biochemical recurrence after
radiotherapy [31]. In their work, K. Gnep et al. [32] have
revealed a relationship between the textural characteristics
of Haralick according to multiparametric MRI of the prostate
gland and the risk of biochemical recurrence after radiation
therapy. The results have shown that the three textural
analysis parameters calculated from T2-weighted images
and MDC maps showed statistically significant correlations
with biochemical recurrence rates [32]. In a study by S.B.
Ginsburg et al. [33], this idea was developed in the form
of the development of a multivariate logistic regression
model using the parameters of T2-weighted images, where
the described model reached an area under the receiver
operating characteristic curve (AUC) of 0.83.

Several studies with a similar design, particularly the
retrospective study by S.Y. Park et al. [34], have demonstrated
the ability of MDC maps to predict biochemical recurrence
after surgical treatment of prostate cancer (AUC = 0.76).

Radiomics research currently focuses mainly on lung
cancer and neuroradiology; the number of prostate cancer
studies is relatively small. However, it should be understood
that most approaches for radiomic analysis under study in
lung cancer can be applied to other oncological diseases.

Category 2 studies in the field of radiomics relate to the
identification of relationships with histopathological parameters.
A negative feedback between MDC and tumor aggressiveness,
which is assessed using the Gleason scale, has been convincingly
demonstrated [35]. An additional application of texture analysis
parameters enables the development of prognostic models for
assessing the degree of tumor malignancy, including the use of
T2-weighted images [16, 23].

In some studies, a negative feedback was revealed
between MDC and tumor cellularity [14]. However, most
studies on tumor biology assessment remain at the
correlation evaluation stage, and predictive models are
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only available for predicting tumor aggressiveness. The
integration of radiomics and genetics has been named
“radiogenomics,” which is aimed at identifying the correlation
between the quantitative indicators of a diagnostic image and
the expression of specific tumor receptors [36]. Despite its
relatively recent advent, several studies on radiogenomics
have been conducted. Note that both quantitative indicators
of multiparametric MRI and genetic information reflect the
pathomorphological status of tumors.

In the study by N. Jamshidi et al. [37], the quantitative
parameters of multiparametric MRI and genetic variants
of intact tissue and tumor foci of the prostate gland were
evaluated, and a relationship was revealed between
quantitative markers of a diagnostic image and the genetic
characteristics of the tissues.

In their study, R. Stoyanova et al. [38] have shown
a significant correlation between some sets of genes
and quantitative indicators of images, which enabled the
distribution of patients into risk groups.

The research results demonstrated that radiogenomics
can assess genetic characteristics that can be used to
develop personalized tumor treatment strategies. Thus,
current studies on prostate radiomics focus primarily on
the histopathological level, with great prospects for tumor
detection and aggressiveness stratification, whereas
predictive models have yet to be developed for other
biological characteristics of tumors.

CONCLUSION

The diagnosis of prostate cancer is currently based on
a combination of histological data and medical imaging,
primarily multiparametric MRI. Textural analysis can
objectively, noninvasively stratify patients in terms of
possible treatment options. Despite the limited number of
studies, promising data have been obtained on the possibility
of differential diagnosis of clinically significant prostate
cancer, including the Gleason scale gradation.

Major prospective studies are required to implement
radiomics into routine practice in the future.
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