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AHHOTALIUA

MamMorpagua — B HacToALLEe BPEMA eAMHCTBEHHBINA CNOCO6 CKPMHUHIA paKa Mofo4HoM xenesbl (PMHK). Xota umng-
poBas MamMMorpadua CIy*WUT OCHOBHBIM U Haubosee LIMPOKOAOCTYNHLIM METOAOM AnA BhiABneHua PMHK, eé addektus-
HOCTb B 0BHapy*KEHWUM U OLIEHKE BHYTPMOMYXONEBOM reTeporeHHOCTM OMyXoNu orpaHuyeHa. [TyHKUMoHHaA buoncusa He Mo-
KET 0TPa3UTb MMCTONOTMYECKOM KapTUHBI OMYXOiM B LENIOM M3-3a Hebonblioro pasMepa obpasua TKaHU WUAW OMyXOnu.
Mo aTon NpuumHe BbIGOp MOOXOAALLErO SIEYEHUA W ONpefeneHVe NPOrHo3a CTaHOBUTCA 3aTpyAHWUTENbHBIM. B aToM cyuae
TaKoW HeMHBa3WBHBIA NOAX0M, KaK MedULMHCKaA BU3yanu3auud, faeT bonee nonHoe npeacTaBneHue 0b onyxonu, nep-
CMEKTUBEH NpU «BUPTYaNnbHOM GUOMNCUK», a TaKKe B KOHTPOJie NPOrpeccupoBaHns 3abofeBaHMA U 0TBETA HA Tepanuio.

PaguoMuKa ¢ MOMOLLbIO TEKCTYPHOrO aHanu3a No3BONIAET B3rNAHYTb Ha CHUMOK KaK Ha rpynny YMCNOBbIX XapaKTe-
PUCTUK, BLINTW 33 Npegenbl NMPUBLIYHOMO KaueCTBEHHOMO 3PUTE/IbHOr0 BOCMPUATMA MHTEHCUMBHOCTEN U NepeinTu K bonee
rnyboKoMy aHanu3y UMQPOBbIX, MUKCENbHBIX JaHHbIX C LieNblo MOBbILLEHUA TOUHOCTU OUGQepeHLManbHON AMarHoCTUKM.
MeToq pagMoreHoMUKM, ABNAACH CTECTBEHHLIM NPOLOMKEHUEM PaAUOMUKM, GOKYCUPYETCA Ha onpeseneHnu aKCnpeccum
reHoB Mcxofd M3 NydeBoro ¢peHoTMna onyxonu. B o63ope paccMaTpuBalTCA BO3MOMHOCTU NMPUMEHEHWUA MaMMorpadum
B PaaMoMuKe M paguoreHoMuke PMHK.

B cratbe npepcTaBneH 063op nutepatypbl 6a3 gaHHbIx PubMed, Medline, Springer, eLibrary, a Takse HaiaeHHbIX ¢ no-
Moubto Google Scholar akTyanbHbIX POCCUICKUX HayuHbIX cTaTeit. [lonyyeHHan peneBaHTHanA MHGopMaLua 06beanHEHa,
CTPYKTYpUpOBaHa 1 NpoaHanM3upoBaHa C Lenblo U3y4YeHWA ponv Mammorpadum B pagnommke PMAK.

KnioyeBble cnoBa: pak MoJIOYHO Kene3bl; MaMMorpadua; paguoMmKa; paguoreHOMIUKa; UCKYCCTBEHHBIN MHTENNEKT.
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ABSTRACT

Mammaography is still the only screening method for breast cancer. Although digital mammography is the most common
and widely used method for detecting breast cancer, it is ineffective at detecting and assessing intratumoral heterogeneity.
Due to the small size of the tissue sample or tumor, biopsies often fail to represent the entire tumor. For this reason, selecting
a treatment and determining a patient’s prognosis becomes difficult. In this case, medical imaging is a noninvasive approach
that can provide a more comprehensive view of the entire tumor, act as a “virtual biopsy,” and be useful for monitoring disease
progression and response to therapy.

Radiomics with texture analysis allows you to look at an image as a group of numerical data, moving beyond the usual
visual perception and into a deeper analysis of digital, pixel data to improve the accuracy of differential diagnosis. Radioge-
nomics is a natural extension of radiomics that focuses on determining gene expression based on radiologic tumor phenotype.
The purpose of this review is to evaluate the role of mammography in breast cancer radiomics and radiogenomics.

The article presents a literature review of relevant Russian scientific articles found in databases such as PubMed, Medline,
Springer, eLibrary, and Google Scholar. The information obtained was then pooled, structured, and analyzed to examine the
role of mammaography in breast cancer screening radiomics.
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BREAST CANCER: RELEVANCE
AND CHARACTERISTICS

Breast cancer (BC) is a pressing issue in modern oncol-
ogy since it ranks first in terms of prevalence among all
malignant neoplasms in women [1]. In Russia, the incidence
of BC was 89.8 cases per 100,000 female population in 2018
[1];in 2019, 73,366 breast cancer cases were detected, with
27.7% of patients in stages Ill and IV [2].

BC is a heterogeneous disease, which means that tumor
morphology and expression subtypes differ depending on the
receptor status of BC [3, 4]. Further, the expression of the
estrogen receptor (ER), progesterone receptor (PR), and hu-
man epidermal growth factor receptor 2 (HER2) determines
BC receptor status. The proliferation marker Ki-67 and the
epidermal growth factor receptor are also immunochemi-
cally stained to determine the molecular subtype of BC [4].

The following are the five molecular subtypes of BC:

1) Luminal A [ER+, PR+ high (=20%), HER2-, Ki-67 low
(=20%)]: estrogen-dependent low-aggressive tumors
with no overexpression of HER2 protein receptors; char-
acterized by high expression of the ER gene

2) Luminal B [ER+, PR+ low (<20%), HER2-, Ki-67 highl:
estrogen-dependent tumors with no overexpression of
HER?2 protein receptors

3) Luminal B [ER+, HER2+, any Ki-67 level, any PR]: estro-
gen-dependent aggressive tumors; expressed amplifica-
tion of the HER2 oncogene; apparent expression of the
ER gene

4) HER2 positive [ER- and PR-, any Ki-67, HER2+]: estro-
gen-independent aggressive tumors; expressed amplifi-
cation of the HER2 oncogene

5) Triple negative (basal-like): estrogen-independent ag-
gressive tumors with the worst survival rates (ER-, PR-,
HER2-) [3-5]

Tumor biology is known to influence the selection of
therapy as well as the outcome prognosis, with ER+ and
PR+ patients having a longer relapse-free survival ability,
while triple-negative BC (TNBC) (ER-, PR-, HER2-) has the
most aggressive course and the worst survival rates [3,
6. The use of biological markers to identify BC subtypes
improves patient survival by allowing for more accurate
disease diagnosis. For example, patients with ER and PR
expression in their tumors should receive endocrine ther-
apy, while patients with HER2 expression should receive
anti-HER? therapy [7].

Intratumoral heterogeneity is defined as the heterogene-
ity of the morphological structure and the variability in the
expression of various markers by individual groups of cells
within the same tumor [8, 9. On the other hand, morphologi-
cal intratumoral heterogeneity can be defined as diversity in
different areas of the tumor, i.e., spatial heterogeneity, or
as tumor progression in time, i.e., heterogeneity in time [8].
Due to such heterogeneity of neoplasms and the small size
of the puncture tissue sample, the biopsy cannot reflect the
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histological presentation of the tumor as a whole. There-
fore, choosing the appropriate treatment and determining
the prognosis becomes difficult. When the tumor is small,
biopsies can be difficult. In this case, a noninvasive approach
such as medical imaging provides a more consistent view
of the tumor and holds promise for “virtual biopsy,” as well
as monitoring disease progression and response to therapy
[7, 10-12].

EARLY DIAGNOSTICS OF BREAST
CANCER AND PREDICTION
OF THE OUTCOME OF THERAPY

Cancer detection at an early stage is an effective method
to reduce patient mortality [13]. Mammography is still the
only method for screening and diagnosing BC [10]. Although
digital mammography is the most commonly used method
for early detection of BC, its efficiency in detecting findings
is limited, and mammaography has a lower sensitivity in pa-
tients with high mammary gland density (ACR-C and D) [14],
since the pathological lesion can be overlapped by fibroglan-
dular structures in the image [15, 16]. Despite the reduced
sensitivity in one of the groups of patients, digital mammog-
raphy currently has the best combination of sensitivity and
specificity in diagnostics of BC, but these two indicators vary
between 75%-90% and 80%-90%, respectively, depending
on the country [15]. In their recent study, 0. Demircioglu et
al. [17] showed that the interpretation of low-quality images
by radiologists with limited experience leads to overdiagno-
sis and unnecessary painful invasive procedures in roughly
half of clinical cases [6, 15, 17].

Recent advances in artificial intelligence (Al) technolo-
gies used for image analysis hold promise for detecting tu-
mors and reducing the burden on doctors, evaluating treat-
ment, and monitoring disease progression [6]. However, in
BC, the primary tasks of clinical practice and research are
early detection of the disease prognosis and prediction of
the response to therapy. From this point of view, other ap-
plications of Al are possible, such as using texture analysis
to determine the cancer subtypes and predict treatment re-
sponse [6, 18, 19].

The interpretation of images by a radiologist with an
assessment of the tumor structure, its relationship to the
surrounding tissues, special aspects of the location, and
structure of microcalcifications are all part of the mammo-
graphic study analysis. To create truly personalized therapy,
a quantitative (objective) assessment of the lesion is also
required [6].

Intratumoral heterogeneity is important for accurate di-
agnosis, clinical prognosis (response to treatment, survival
rate, disease progression, etc.), and treatment of oncologi-
cal diseases [20, 21]. Early detection of tumor resistance
to therapy is critical for improving outcomes, allowing for
timely treatment regimen changes [6].
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Thus, there is a need to improve the efficiency of detec-
tion, prediction of outcome, and response to treatment of
BC. A unique set of techniques, combined in radiomics and
radiogenomics, is gaining traction as a tool for maximizing
the information that can be extracted from virtually any mo-
dality of digital medical imaging [15].

RADIOMICS AND RADIOGENOMICS

Radiation diagnostic images contain information that in-
dicates pathophysiological processes, and this relationship
can be identified using quantitative image analysis [22]. To
put it another way, tumor characteristics at the cellular and
genetic levels are reflected in the phenotypic patterns of the
tumor, which can be manifested and detected in images [23].

Radiomics is a process that includes the stages of prepa-
ration and subsequent quantitative analysis of multidimen-
sional data obtained from digital medical images (the “omic”
suffix appears in the names of molecular biology fields that
deal with large amounts of data [24]). Radiomics is defined as
image analysis that uses specific algorithms to extract numer-
ical characteristics of images in order to create classification
models to improve medical decision-making support, as well
as to determine the disease prognosis [25, 26] and treatment
[27], which is especially significant for personalized therapy.
In radiomics, one area of interest in an image is used to obtain
a set (sometimes tens or hundreds) of numerical character-
istics, each of which can hold a certain information and theo-
retical aspect (often referred to as a “radiomic sign”), which
is not available in normal viewing of images [15]. Radiomics
transforms medical imaging data into a dataset of order sta-
tistics by using automatic texture sign extraction algorithms
for digital medical images [28]. In other words, radiomics with
the use of texture analysis allows you to think of an image as
a collection of numerical characteristics, go beyond the usual
visual perception, and analyze multidimensional data.

Visualization Segmentation

Image
acquisition

Image
segmentation
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Radiogenomics is a technology that connects a patient’s
genotype to an imaging phenotype. It should be noted that
the term “radiogenomics” can also refer to genetic variabil-
ity and its relationship with response to radiation therapy
[29, 30], but it is more often used to assess the relationship
between the image characteristics of a tumor or any other
disease and its gene expression patterns and gene muta-
tions [25, 26].

Radiogenomics is a method for determining gene expres-
sion in a tumor based on its radiation phenotype. This is im-
portant because tumors are heterogeneous, and radiomics
data are extracted from the region of interest (tumor) as a
whole rather than from a separate sample [22]. Radiogenom-
ics also allows for the assessment of treatment response
that is not solely based on the traditional measurement of
tumor size over time [25]. The combination of radiomics and
radiogenomics can detect gene abnormalities in images [6].
Radiomics and radiogenomics improve the accuracy of clinical
diagnosis and have prognostic value by identifying relation-
ships between various types of clinical data [22].

STAGES OF RADIOMICS

When considering radiomics as a process, several ma-
jor stages can be distinguished, namely, image acquisition,
highlighting the area of interest, extraction of radiomic signs
from the area of interest (texture analysis of images), analy-
sis of textural signs, and construction of various prediction
and classification models using the obtained radiomic data
with the option of including additional information (e.g.,
clinical, demographic, or genomic data; the presence of co-
morbid conditions) [22, 23, 311. The stages of radiomics are
depicted in Fig. 1, and their more detailed characteristics are
discussed further below:

1. Determination of the clinical problem and acquisition
of digital medical images, excluding low-quality studies.

Modeling

.

Radiomics
\

l] b

Intensity

-

“Hen

Texture

analysis Sign
of images analysis

1
|
Texture |
1
1

Fig. 1. The diagram illustrates the typical stages in radiomics. After obtaining medical images (1), they are manually or automatically
segmented (2). Using special software or programming language modules, radiomic signs of the first and higher orders are extracted
from segmented regions of interest (3). Next, the analysis and selection of the most significant textural signs obtained are carried out.
Finally, based on the analyzed radiomic data, various clinical and diagnostic models of classification or prediction are constructed (4)
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2. Segmentation of images to the main analyzed areas
of interest [32], such as a malignant neoplasm, to assess
intratumoral heterogeneity. Many tumors have indistinct
boundaries, which complicates the reproducibility of their
segmentation [33]. Although it is preferable to use semiau-
tomatic or fully automatic selection of the area of interest
using special software, in some cases, expert specification
and manual selection are required [23, 34]. The selection
process of the region of interest is not standardized, and the
region of interest may contain the entire tumor or some of
its parts [35, 36]. Manually determining the region of interest
is time-consuming and variable due to differences in image
interpretation by different radiologists [33], which ultimately
affects the accuracy of the radiomic models constructed;
however, modern deep learning technologies using big data
are capable of mitigating this effect [37].

3. Extraction of a variety of radiomic signs from a seg-
mented region of interest using mathematical operations
involving numerical values of intensities and relative posi-
tions of pixels or voxels in images. The extracted quantitative
signs are classified into two categories: morphological signs
(volume and shape) and histogram signs (description of the
intensity of gray tone levels) of the first, second, and higher
orders [26, 34].

Morphological signs reflect the shape of the region of
interest. For planar images, 2D signs of shape are relevant,
such as the perimeter-to-surface ratio and roundness as
a measure of the approximation of the shape of the region
of interest to the shape of a circle. For example, a stellate
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tumor will have a higher surface-to-volume ratio than a
round tumor [31].

First-order histogram signs [38] indicate the distribution
of gray-level intensities for pixels in the region of interest.
The most common signs (mean and median) in this cate-
gory indicate the width of the range of intensities; entropy
is a measure of irregularity in the distribution of intensities
(higher values indicate a more heterogeneous region) [39].
However, first-order statistics do not account for the spatial
arrangement of pixels.

Second-order histogram signs [38], also known as tex-
ture signs, indicate the spatial relationship between two ad-
jacent pixels with the same or different brightness values.
The most common technique for extracting texture signs is
based on a gray-level co-occurrence matrix, which is a ma-
trix whose rows and columns represent gray intensity-level
values; the matrix cells indicate the number of times the cor-
responding gray values are in a certain relationship (angle
and distance between the pixels analyzed). For example,
signs obtained by using such a matrix include second-order
entropy, which indicates heterogeneity; energy, which de-
scribes image homogeneity; and contrast range, which de-
termines the local change in intensities [10]. In radiomics,
texture analysis provides information on the measure of
intratumoral heterogeneity [22, 40].

Figure 2 shows a comparison of the histogram signs
of the first and second orders, as well as the formation of
the adjacency matrix of the gray tone level, where Fig. 2 (a)
presents two original images, Fig. 2 (b) histograms of the
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Fig. 2. Comparison of histogram signs of the first and second orders. The two different initial regions of interest of the segmented image
(a) comprise an equal number of pixels in light gray, dark gray, and black shades. Brightness histograms based on the number of pixels
of certain shades (histogram signs of the first order) are the same (b). These signs do not indicate the mutual arrangement of the pixels.
Adjacency matrices (second-order histogram signs) reflect the heterogeneity of images (c). In the future, mathematical algorithms derived
from the obtained histograms of intensities and adjacency matrices of the gray level will be used to calculate a variety of radiomic signs

for analysis and modeling
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first order, and Fig. 2 (c) grayscale adjacency matrices ob-
tained for the original images. The row and column headings
of these matrices contain the shade of gray numbers. Each
cell of the table contains the number of horizontal pairs of
pixels, in which pixels with the shade indicated in the header
of the row and column of this cell are located relative to
each other at an angle of 0° [41]. Subsequently, mathemati-
cal algorithms from the obtained histograms of intensities
and adjacency matrices of the gray level are used to cal-
culate a set of radiomics signs for analysis and modeling.

4. Analysis and modeling: the radiomic signs obtained,
depending on the question posed, can be analyzed in various
ways, ranging from statistical models to machine learning
methods.

Given the large amount of data extracted from the im-
ages, step 1 is selection or reduction of signs. Irreproducible
signs should be excluded, since they most probably lead to
false results of the models constructed [42, 43].

Step 2 is multivariate data analysis [31] and the con-
struction of models classified into three main groups:
predictive, explanatory, and descriptive [15]. Descriptive
models are used to obtain a broad representation of each
sign, summarizing its key characteristics. Thus, explana-
tory methods often used for biomedical data frequently fo-
cus on the ability of the model to establish a relationship
between a sign and an outcome, such as the relationship
between the texture characteristics of the gray-level co-
incidence matrix and the morphological type of BC within
the region of interest. Further, machine learning methods
are used to create predictive models, which analyze the
probability of certain outcomes based on the input data
obtained [15], such as a radiomic model for predicting the
lack of response to neoadjuvant BC chemotherapy. Before
using the models in clinical settings, the quality and re-
producibility of the results of operation obtained should be
assessed [31].

EXPERIENCE, POSSIBILITIES,

AND PROSPECTS FOR USING
MAMMOGRAPHY IN RADIOMICS AND
RADIOGENOMICS OF BREAST CANCER

Recognition of a malignant neoplasm

The most difficult and crucial step in mammography is
classifying mammogram findings as benign or malignant
[44]. In their recent study, N. Mao et al. [45] demonstrated
that using quantitative signs in conjunction with Al can pro-
vide greater diagnostic efficiency when using mammography
compared to the efficiency of diagnostics performed by ex-
perienced radiologists [15].

The process of classifying microcalcifications as benign
or malignant based on images is still a difficult task for ra-
diologists [46]. When suspicious calcifications are detected,
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texture analysis of images can be performed in conjunction
with Al methods, potentially reducing the number of unnec-
essary biopsies [47, 48].

Specific features of the mammary gland parenchyma
may reflect biological risk factors for BC. H. Li et al. [49]
showed that using textural signs extracted from mammo-
grams of the affected and contralateral (with normal paren-
chyma) glands improves the accuracy of digital mammog-
raphy in the diagnosis of BC. Studies reveal that radiomics
with high sensitivity and specificity can distinguish between
malignant and benign mammary gland neoplasms [50].

Definition of BC subtypes

Recent radiogenomics studies have confirmed the re-
lationship between MR signs of BC imaging and molecular
subtypes, namely, luminal A, luminal B, HER2, and TNBC
[51]. Although mammography images provide less informa-
tion than magnetic resonance imaging (MRI), several stud-
ies are currently underway to demonstrate the potential
of mammography in radiomics and radiogenomics of BC.
In their study, W. Ma et al. [10] demonstrated the possibil-
ity of predicting the molecular subtype of BC by extracting
radiomic characteristics from mammographic images. The
most significant signs were roundness, concavity, mean
gray value, and correlation. The results revealed that luminal
subtypes and TNBC have distinct textural signs, in contrast to
other subtypes, which allow them to be quantitatively distin-
guished using radiomics.

In some BC patients, the use of neoadjuvant che-
motherapy does not provide an effective therapeutic
response, resulting in delayed surgery, poor prognosis,
and increase in treatment costs. Moreover, the use of
radiomics in conjunction with independent clinical risk
factors (e.g., Ki-67 index, HER2 status) has been shown
to improve the predictive model of nonresponse to neo-
adjuvant chemotherapy [52].

Early detection of a more aggressive subtype of BC,
namely, TNBC, using medical imaging will allow clinicians
to prescribe treatment prior to definitive hiopsy confir-
mation [53]. In a study by H.X. Zhang et al. [53], TNBC
had greater roundness and concavity compared to other
subtypes; the area under the ROC curve (receiver oper-
ating characteristic curve; classic ROC curve, a graph of
sensitivity versus specificity [54]) was used to assess the
accuracy of these two signs in differentiating TNBC from
other BC subtypes and was greater than 0.70 [53, 55]. In
this study, the skewness coefficient (a histogram attribute
reflecting the skewness of the distribution of values rela-
tive to the mean) of all subtypes was less than 0 (negative
or left-sided skewness). Further, the asymmetry coeffi-
cient of TNBC was found to be lower than the coefficients
of the other subtypes under study. Therefore, the above
radiomic signs can be considered as potential markers
of differences between TNBC and other subtypes of BC in
the future [53].
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Predicting the development of BC
and the possibility of personalized
screening

Radiomics-based technologies can help advance
personalized screening by developing tools for indi-
vidual risk assessment and including them in decision-
making support tools for mammographic screening, as
well as individual screening intervals [56-58]. A higher
density of mammary glands has been linked to an in-
creased risk of BC development [59]. The term “density”
refers to the degree of attenuation of X-ray radiation as
it passes through the gland and reflects the distribution
of fibroglandular tissue. However, the definition of den-
sity alone does not represent the entire complexity of
the gland structure. Image-derived textural signs have
been proposed as markers of changes in the paren-
chyma, indicating a link to the development of BC [57,
591. In their study, D. Kontos et al. [59] (2019) identified
radiomic phenotypes on mammograms that reflect the
complexity of the parenchyma (in addition to density)
and are independently associated with BC. In contrast
to the conventional definition of density, textural signs
indicated a subtler and more localized complexity of
the parenchymal pattern. The density of the mammary
glands differed between the phenotypes of low and me-
dium complexity of the parenchyma but was similar for
the other phenotypes. There are interesting data on the
phenotype with the least complexity (parenchyma com-
plexity) in women with high mammary gland density due
to their greater homogeneity, whereas the phenotype
with low and medium parenchyma complexity included
a small number of high-density images [59].

Preoperative detection of axillary lymph node
metastases

BC metastases are most commonly found in the axil-
lary lymph nodes. Axillary lymph node status is an im-
portant factor in determining overall and relapse-free
survival in BC patients [60]. An accurate preoperative
determination of the status of the axillary lymph nodes
can provide doctors with information that allows them
to decide whether or not to perform lymphadenectomy
and prescribe adjuvant therapy. Currently, the status is
determined by biopsy of the sentinel lymph node, which
can lead to complications, such as damage to blood ves-
sels and nerves, as well as the development of lymph-
edema; and diagnostics using imaging methods has a low
sensitivity [60]. J. Yang et al. [60] developed a model that
includes radiomic signs extracted from mammograms,
which can be used as a noninvasive method for deter-
mining metastases in the axillary lymph nodes prior to
surgery when combined with additional clinical and path-
ological information.
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LIMITATIONS ON THE APPLICATION
OF RADIOMICS

Although radiomics and radiogenomics hold great prom-
ise for the advancement of personalized medicine, they must
be validated on an independent dataset to confirm their di-
agnostic and predictive value. It will take time for these
technologies to gain significant practical value in cancer
research and even more time before they can be applied in
clinical practice. These limitations are due to the fact that
the available large amounts of data do not currently contain
the full characteristics of patients [6]. The complexity of the
reproducibility of radiomics results is associated with disad-
vantages at each stage, namely, different textural signs are
obtained on different equipment and visualization protocols
[61, 62]; the gold standard for manual tumor segmentation
is time-consuming and operator-dependent [63]; semiauto-
matic and automatic segmentations, which reduce variability
[64, 65], are not standardized; there is obvious repeatability
between texture signs, necessitating the reduction of the
size of the data [66, 67]; and there is no clear explanation
of the relationship between the unit of radiomics (the basic
unit of the texture) and human tissues. Furthermore, any
“meaningful” research results obtained should be reviewed
when the underlying theory is unclear and technical methods
are not standardized [68].

PROSPECTS FOR USING MAGNETIC
RESONANCE IMAGING IN BREAST
CANCER RADIOMICS

Convincing evidence have been accumulated that MRI of
the mammary glands is superior in diagnostic accuracy to
traditional diagnostic methods such as mammography [69].
Aside from detecting more cases of duct carcinoma in situ,
MRI of the mammary glands often changes the stage of the
oncological process, which helps to optimize the treatment
process.

It has been established that radiomic signs extracted
from MR images of mammary glands indicate tumor het-
erogeneity and vascularization [70], as well as enable to
differentiate duct carcinoma from a benign focus [71].
Existing radiomic models continue to lag behind expert
mammologists in terms of area under the curve for dif-
ferentiating benign from malignant lesions [72]. However,
promising results in identifying suspicious (BI-RADS 4 and
5) lesions using diffusion-weighted imaging radiomics
have been obtained [73].

Radiomics appears to be capable of assisting in clinical
decision-making while avoiding potentially invasive inter-
ventions in the armpit. Two different studies have shown
that the radiomic model can predict sentinel lymph node
metastases [74, 75], which is extremely important in clinical
practice.
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Another application of radiomics is associated with
the Ki-67 proliferation index, which is used as a prognos-
tic marker in BC [72]. Recent studies have investigated the
possibility of predicting the expression of the Ki-67 prolifera-
tion marker using radiomics of a series of dynamic contrast
enhancements [76-79].

CONCLUSION

One of the key concepts in radiomics is that ray diagnos-
tic images contain data that can provide more information
about the region of interest than previously believed. Mam-
mography is the most effective method for early detection of
BC. Mammographic images can be used for radiomic analy-
sis, which can be used to identify malignant neoplasms, BC
subtypes, disease progression, and response to treatment.

Radiomics-based technologies, such as in the field of
mammography, may be incorporated into medical decision-
making support tools in the future to determine strategies
for individual screening, follow-up, and possibly preventive
therapy. However, it should be noted that radiomics is still
in its early stages of development, with much more research
needed before clinical application.

Radiomics mammography provides important diag-
nostic and prognostic information about BC, which has the
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