Применение искусственного интеллекта для диагностики аневризмы грудного отдела аорты при ретроспективном анализе компьютерных томограмм органов грудной клетки

А.В. Соловьёв1, 2, В.Е. Синицын1, 3, 4, А.В. Петряйкин1, А.В. Владимировский1, Р.В. Решетников1

1 Научно-практический клинический центр диагностики и телемедицинских технологий, Москва, Российская Федерация
2 Морозовская детская городская клиническая больница, Москва, Российская Федерация
3 Городская клиническая больница имени И.В. Давыдовского, Москва, Российская Федерация
4 Московский государственный университет имени М.В. Ломоносова, Москва, Российская Федерация

АННОТАЦИЯ

Обоснование: аневризмы аорты — заболевания, известные как «тихие убийцы», — зачастую протекают бессимптомно, приводя к разрыву сосуда и летальному исходу. Ежегодные показатели: разрывы — до 3,6%, расслоения — до 3,7%, внезапная смерть — до 10,8%. Своевременная диагностика и лечение на ранней стадии спасает жизнь пациента. Применение технологий искусственного интеллекта (ТИИ) помогает выявлять аневризмы аорты, что существенно улучшает качество диагностики и спасает жизнь пациентов.

Цель: оценить эффективность применения ТИИ для выявления аневризмы грудного отдела аорты по данным компьютерной томографии (КТ) органов грудной клетки (ОГК) и определить возможности использования ТИИ как помощника врача-рентгенолога при первичном описании лучевых исследований.

Методы: в рамках исследования ретроспективно оценены результаты ТИИ, направленных на выявление аневризмы грудного отдела аорты на КТ ОГК; контрастирование при первичном исследовании не проводилось. Выборка состояла из 84 405 наблюдений пациентов старше 18 лет, из которых было отобрано 86 исследований с аневризмами грудной аорты по данным ТИИ. Отобранные исследования были ретроспективно оценены рентгенологами и сосудистыми хирургами в связи с вероятным наличием аневризмы грудного отдела аорты. В 44 исследованиях рентгенологом первично была выявлена аневризма аорты. В 31 исследовании аневризма не была первично описана врачом-рентгенологом, 6 были исключены из выборки (по причине отсутствия протокола врача-рентгенолога в Единой радиологической информационной системе), а 5 исследований были с ложноположительными результатами по данным ТИИ.

Результаты: применение ТИИ позволяет выявлять и маркировать на изображениях патологические изменения аорты. Технологии искусственного интеллекта способствуют повышению выявляемости аневризмы грудной аорты при описании КТ ОГК на 38,8%. Встречаемость аневризмы восходящего отдела аорты составила 0,3%, что соответствует литературным данным — 0,16–1,6% случаев. По результатам исследования было выполнено 22 оперативных вмешательств по стентированию аорты.

Заключение: использование ТИИ при первичном описании КТ ОГК может помочь повысить выявляемость клинически значимых патологических состояний, таких как аневризма грудного отдела аорты. Актуальна дальнейшая разработка направлений маршрутизации данной категории пациентов в режиме «cito» для оперативного лечения. Расширение ретроспективного скрининга по данным КТ ОГК с применением ТИИ позволит улучшить качество диагностики сопутствующей патологии, а также предотвратить негативные последствия для пациентов.

Ключевые слова: компьютерная томография; аневризма аорты; искусственный интеллект.
Artificial intelligence in the diagnosis of thoracic aortic aneurysms in a retrospective chest computed tomography scan analysis

Alexander V. Solovev1, 2, Valentin E. Sinitsyn1, 3, 4, Alexey V. Petraikin1, Anton A. Vladzymyrskyy1, Roman V. Reshetnikov1

1 Moscow Center for Diagnostics and Telemedicine, Moscow, Russian Federation
2 Morozovskaya Children’s City Clinical Hospital, Moscow, Russian Federation
3 I.V. Davydovsky City Clinical Hospital, Moscow, Russian Federation
4 Lomonosov Moscow State University, Moscow, Russian Federation

ABSTRACT

BACKGROUND: Aortic aneurysms, known as “silent killers”, are frequently asymptomatic, leading to vessel rupture and death. Annual rates for ruptures, stratifications, and sudden deaths are up to 3.6%, 3.7%, and 10.8%, respectively. Timely diagnosis and early treatment save a patient’s life. The use of artificial intelligence (AI) technologies helps to detect aortic aneurysms, which significantly improves the quality of diagnosis and saves patients’ lives.

AIM: To assess the efficiency of using AI technologies to detect thoracic aortic aneurysms on chest computed tomography (CT) and determining the possibility of using AI technologies as an assistant to the radiologist during the primary description of radiological images.

METHODS: The study retrospectively assessed the results of AI technologies aimed at detecting thoracic aortic aneurysms on chest CT scans. No contrast enhancement was performed primarily. The sample consisted of 84,405 observations of patients over the age of 18 years; of these, 86 scans with thoracic aortic aneurysms were selected according to AI data. The selected examinations were retrospectively assessed by radiologists and vascular surgeons for the probable presence of a thoracic aortic aneurysm. In 44 cases, an aortic aneurysm was initially detected by the radiologist. In 31 cases, an aneurysm was not initially described by the radiologist, 6 were excluded from the sample (due to the absence of the radiologist’s report in the Unified Radiological Information Service), and 5 scans had false-positive results according to AI findings.

RESULTS: The use of AI technologies allows detection and labeling of pathological changes in the aorta on the images. AI technologies increase the detectability of thoracic aortic aneurysms in the description of chest CT scans by 38.8%. The incidence of ascending aortic aneurysm was 0.3%, which corresponded to the literature data of 0.16%–1.6%. According to the results, 22 surgical interventions for aortic stenting were performed.

CONCLUSIONS: The use of AI in the primary chest CT description may help increase the detectability of clinically significant pathological conditions, such as thoracic aortic aneurysm. Further development of routing for this category of patients in the cito mode for surgical treatment is relevant. Expansion of retrospective screening by chest CT scans using AI systems will improve the quality of diagnosis of concomitant pathologies and prevent adverse outcomes for patients.

Keywords: computed tomography; aortic aneurysm; artificial intelligence.
REFERENCES


AUTHORS’ INFO

* Alexander V. Solovev;
ORCID: https://orcid.org/0000-0003-4485-2638;
eLibrary SPIN: 9654-4005; e-mail: atlantis.92@mail.ru

Valentin E. Sinitsyn, MD, Dr. Sci. (Med.), Professor;
ORCID: https://orcid.org/0000-0002-5649-2193;
eLibrary SPIN: 8449-6590; e-mail: vsini@mail.ru

Alexey V. Petraikin, MD, Dr. Sci. (Med.);
ORCID: https://orcid.org/0000-0002-1694-4682;
eLibrary SPIN: 6193-1656; e-mail: alexeypetraikin@gmail.com

Anton A. Vladzymyrsky;
ORCID: https://orcid.org/0000-0002-2990-7736;
eLibrary SPIN: 3602-7120; e-mail: a.vladzimirsky@npcmr.ru

Roman V. Reshetnikov, Cand. Sci. (Phys. and Math.);
ORCID: https://orcid.org/0000-0002-9661-0254;
eLibrary SPIN: 8592-0558; e-mail: reshetnikov@fbb.msu.ru

* Автор, ответственный за переписку / Corresponding author