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BO3MOXHOCTH CHUMKEHUA Ny4eBOM HarpysKu

NnpU NpoBeAeHMU KOMNbIOTEpHOU TOMOrpaduu
ANA OLEHKU U3SMEHEHUMU B NErKUX, XapaKTepHbIX
ana COVID-19: ucnonn3oBaHue aganTMBHOM
CTaTUCTUYECKOU UTEPaTUBHOMU PEKOHCTPYKLMUM

[.A. ®unatosa, B.E. CuhmupiH, E.A. MeplumnHa

MoCKOBCKMI rocyaapcTBeHHbI yHUBepcUTeT uMeHn M.B. JloMoHocoBa, MockBa, Poccuiickan Depepauns

AHHOTALNA

06ocHosaHue. bonblumHcTBO naumento ¢ COVID-19 Bo BpemA rocnuTanusaumMy NpoXoaUT MHOMOKpaTHbIE BU3yanu-
3aLMoHHbIe 06CNef0BaHUA, KyMYNATUBHBIA 3QGEKT KOTOPbIX MOMKET 3HAUYMTENBHO YBENMYMBATL 06LLYI0 03y MOY4eHHO-
ro 06nyyeHua. IdpeKTMBHAA [03a 06NYUEHUA MOMKET ObITb CHUMKEHA 3@ CYET YMEHbLLUEHWA TOKA W HAMPAKEHUS peHTre-
HOBCKOM TPY6KM, YTO, O[JHAKO, CHUMKAET KauyecTBO M306parkeHns. Bo3MOKHbBIM peLueHWeM 3ToM NpobneMbl MOXKET cTaTb
BHEpEHWE TEXHONOMMM afjanTUBHOW CTAaTUCTUYECKOWN WTEPaLMOHHOM PEKOHCTPYKLMM «CbIpbIX AaHHbIX» KOMMbIOTEPHOM
Tomorpadum (KT) — Adaptive Statistical Iterative Reconstruction (ASIR). B nocnegHee BpeMA B nuTepaType NOABUINCH
cBefieHns 06 appeKrTMBHOCTM HM3Komo3Hoi KT (HOKT) B gmarHoctmke COVID-19.

Llene — aHanu3 KayecTBa W guarHoctuyeckon ueHHoct HOKT-n3o06paeHnin NErkux nocne npUMeHeHUs UTepaTue-
HOro anrop1T™Ma 06paboTKM; OLEHKA BO3MOMHOCTM CHUMKEHWMA NY4eBOI HAarpy3KM Ha naumeHTa npu auarHoctmke COVID-19.

Mamepuan u Memodsbl. B npocneKTMBHOM MCCNeOOBaHUM MPUHANM Y4acTue NauMeHTbl, MPOXOAMBLUME CTaLMOHap-
Hoe neyeHve B MHPeKumMoHHoM otaenednn MHOL MIY uMm. M.B. JlomoHocoBa. WccnegoBanua KT BbINoaHAAMCL Npu no-
CTYNEHWUW U BbIMWCKE; B NEPUOS FOCMMTaNMU3aLMM UX NOBTOPANM MO Mepe KAMHWUYECcKoW HeobxoammocTu. Mpu nepeoM
McCneaoBaHUM UCMONb30BaNCcA CTaHAapTHbIM npotokon KT ¢ HanpsyKeHWeM Toka Ha Tpybre 120 KB v aBTOMaTnueckuMm
MOZYNMPOBaHUEM CUMbl TOKa B auana3oHe 200-400 mA, npu nosTtopHbix KT npuMensnu npotokon HOKT ¢ yMeHbLueH-
HbIMW NMapaMeTpamMu HanpAxeHWUs Toka Ha Tpybke (100 unm 110 KB) 1 aBTOMaTMYeCKOM MoJynALMeEN TOKa B AManasoHe
40-120 mA. [Ins oueHKM auarHoctudeckomn LeHHoctu HOKT no cpaBHeHMIo co cTaHaapTHow KT 6bin0 npoBedeHo aHKeTu-
poBaHWe Cpeau Bpayei oTaeneHusa nydeBoi auarHocTuku MHOL MIY. AHKeTa BKmiodana B cebA CpaBHUTENbHYI0 XapaK-
TEPUCTUKY OBYX METOAMK NPU BbIABMIEHUM TaKMX NaTONOrMYECKMX MPOLIECCOB, KaK YMIOTHEHWE NErQYHOM TKaHW No TUny
MaTOBOr0 CTEKNA, YNJIOTHEHWE N0 TUMY MaTOBOr0 CTEKNA C PETURYNAPHBIMU M3MEHEHWUAMM, Y4aCTKW KOHCONMAALMK NEroY-
HOW TKaHW, nuMdageHonaTus.

Pesynemamel. B vccnepoBaHuy npuHAn yyactve 151 maumeHT; cpegHui Bo3pact 58+14,2 roga; 53,6% MymuuH.
Mpv HOKT B cpaBHeHnu co cTanaapTHon KT nyyeBan Harpyska CHUXKanach B cpedHeM B 2,96 pasa, KOMMbOTEPHO-TOMOrpa-
duueckuin nupgekc posel (CTDI) — B 2,6 pasa, cpepHsan nornoléxHan fo3sa (DLP) — B 3,1 pasa, cuna ToKa Ha Tpybke —
B 1,83 pasa, HanpAeHWe Ha Tpybre — B 1,2 pa3a. MNonyyeHHble aHKETHbIE AaHHble CBUAETENLCTBYIOT O TOM, YTO NpU Npo-
BegeHun HOKT apdeKTMBHOCTb BbIABNEHWA OCHOBHBIX MPU3HAKOB BMPYCHOW MHEBMOHUM M OLEHKN OMHAMUKM COCTOAHWUA
nauueHTa CyLLeCTBEHHO He MeHsAeTcA Mo cpaBHeHwio ¢ KT, npoBeAEHHOM No cTaHAAPTHOMY MPOTOKONY.

3aknoyeHue. Pe3synbratbl cpaBHeHWA cTaHgapTHon M HOKT meMoHCTpupyloT oTCYTCTBME 3HAUMMbIX NMOTEpb AMarHo-
CTUYECKOW MHPOPMALIMM U KauyecTBa MpM CHUMKEHWUW Ny4eBOW Harpysku. Takum obpasom, HOKT rpyoHoi KneTkuM MoxeT
MCNONb30BaTbCA B PYTUHHOM NpaKTUKe 4NnA ycnelwHon auarHoctukm COVID-19.

KnioueBble cnosa: COVID-19; HOKT; nérkue; nyyesas Harpyska; SARS-CoV-2.

Kak uutuposatb
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Opportunities to reduce the radiation exposure
during computed tomography to assess the changes
in the lungs in patients with COVID-19:

use of adaptive statistical iterative reconstruction

Daria A. Filatova, Valentin E. Sinitsin, Elena A. Mershina

Lomonosov Moscow State University, Moscow, Russian Federation

ABSTRACT

BACKGROUND: Several COVID-19 patients are subjected to multiple imaging examinations during hospitalization, the
cumulative effect of which can significantly increase the total dose of radiation received. The effective radiation dose can be
reduced by lowering the current and voltage of the X-ray tube, but this reduces image quality. One possible solution is to use
adaptive statistical iterative reconstruction technology on the «raw» CT data. Recently, data on the efficacy of low-dose CT
(LDCT) in the diagnosis of COVID-19 have appeared in the literature.

AIM: To analyze the quality and diagnostic value of LDCT images of the lungs after applying an iterative processing algo-
rithm and to assess the possibility of reducing the radiation load on the patient when diagnosing COVID-19.

MATERIALS AND METHODS: Patients from the Infectious Diseases Department of the Moscow State University Hospital
participated in the prospective study. CT examinations were performed at the time of patient admission and discharge and
were repeated as needed during hospitalization. In the first study, a standard CT protocol with a tube voltage of 120 kV and
automatic current modulation in the range of 200-400 mA was used; in repeated CT scans, the LDCT protocol was used with
reduced tube voltage parameters (100 or 110 kV) and automatic current modulation in the range of 40-120 mA. To assess
the diagnostic value of LDCT in comparison with standard CT, a survey was conducted among doctors from the Department
of Radiation Diagnostics at Moscow State University Hospital. The questionnaire included a comparison of the two methods
for identifying the following pathological processes: «ground-glass» opacities, compaction of the lung tissue with reticular
changes, areas of lung tissue consolidation, and lymphadenopathy.

RESULTS: The study included 151 patients. The average age was 58+14.2 years, with men accounting for 53.6% of the
population. During LDCT the radiation load was reduced by 2.96 times on average, CTDI by 2.6 times, DLP by 3.1 times, the
current on the tube by 1.83 times, and the voltage on the tube by 1.2 times. The results indicate that the effectiveness of de-
tecting the main signs of viral pneumonia and assessing the dynamics of the patient’s condition does not differ significantly
from CT performed according to the standard protocol.

CONCLUSIONS: The results of a comparison of standard and low-dose CT show that there is no significant loss of diag-
nostic information and image quality as the radiation load is reduced. Thus, chest LDCT can be used to successfully diagnose
COVID-19 in routine practice.

Keywords: COVID-19; X-ray computed tomography; lung; radiation protection; SARS-CoV-2.

To cite this article
Filatova DA, Sinitsin VE, Mershina EA. Opportunities to reduce the radiation exposure during computed tomography to assess the changes in the lungs in
patients with COVID-19: use of adaptive statistical iterative reconstruction. Digital Diagnostics. 2021;2(2):94-104. DOI: https://doi.org/10.17816/DD62477

Received: 02.03.2021 Accepted: 20.05.2021 Published: 28.06.2021
&
ECOCVECTOR The article can be use under the CC BY-NC-ND 4.0 license

© Authors, 2021



ORIGINAL STUDIES Vol 2 (2) 2021 Digital Diagnostics

DOI: https://doi.org/10.17816/DD62477

Eit R ERmER R RS R A LT,
COVID-19f4543E(bRInTRelE : (EREEMSRIT
ENER

Daria A. Filatova, Valentin E. Sinitsin, Elena A. Mershina

Lomonosov Moscow State University, Moscow, Russian Federation

TR VP

WIE K 2 HCOVID-19 &35 753 b W a1 e 2 2 Ik G ke 2, H S AR RS v DL 56 38 82
S HE S SR . A R S ) T DU i PR AR x T I H R A R R BRI, AR, X
PEAREUE i XA 1 — A R T 2 5N BEN ST s R E (Adaptive
Statistical ITterative Reconstruction (ASIR) ) A&, HTiFEN M ZEFH (CT) Hi»
JRUGE A B G R g iR E R . i, A REFIECT (LDCT) A MME B & HIriE
COVID-19i& W+ ) STk H o

H B AE B 3% A A B B89 5 20 BT Bl BB LDCT MG ) iR B A2 i, DLRASZECOVID-19i2
U 340 V)l 2> 3 i 67 A PRI R REE

LS Tk X IHTHETERT TS S AR % 58 3R S BT R [ 37 K R oA e 5 1 152
FEREBIT B . CTREAIEANBE A H BT 31T, fEERe i, ARIEIGRFHEEZHIT. 558
— LAt e, A8 120k VA FER A200-400mAYE Bl P 1 H 3l FEL I TR AR EECT B, B B R
CTHIHA ISz, LDKTPMMAS & B (100EE110kV) F140-120mATE B N K AZ R, N T
PEANLDCT S5 bR ECTAH LL B2 Wi e, 78 B REE 37 K B b DR SHA W R BEA TRt T T
WIS A . A A RS S PR VR bR R, A X A B R, a2k
RUESAHEN, Wi BERD B 3R R s B WRAR AL, it 2 28] 45 X 4, IR EL 25995

CERLGHT R R 1514 B PR 58 +14. 2% M N53. 6% . HFLDCT, HhRr#ECT
FREE, RS2 N B2, 9665, THEALIZE A= IR 4 (CTDD) —2. 64%, “FIMUH]
& (DLP) —3.1f%, B LMHE—1.834%, & LA E-1. 265, SRIBNREHIERN, £
LDCTHHIE], SAR4E bR v b SCIEAT HOCTAR B, RGN 2 M i 48 1) =8 AR AE NP4k JE 2 15 sl &
A A B

S50 LLE bR E FICTAILDCT ) 45 SRR B, FEHR ST 0 fmr FRAR B L T, 2 Wi B BRI A
EPR. ik, BERILDCTH v LAFE & L B Hh F T B D2 iCovVID-19.
KB COVID-19;LDCT ; fili; &4t 61 i ; SARS-CoV-2.
RS

Filatova DA, Sinitsin VE, Mershina EA. 7£ 15 HLWT 2 4148 B 1E) o /D S 55 47 107 LAVPA COVID- 19k A8 Ak I T e M (S H & i 4 it
IEACE . Digital Diagnostics. 2021;2(2):94-104. DOI: https://doi.org/10.17816/DD62477

& : 02.03.2021 % 20.05.2021 AT HH:28.06.2021
&
ECO®VECTOR The article can be use under the CC BY-NC-ND 4.0 license

© Authors, 2021



97

ORIGINAL STUDIES Vol 2 (2) 2021 Digital Diagnostics
BACKGROUND METHODS
During the coronavirus disease 2019 (COVID-19) pan- Study design

demic, computed tomography (CT) studies are used to diag-
nose coronavirus pneumonia in both outpatient and inpatient
settings and are recommended to be performed in patients
suspected or verified with COVID-19 on the day of hospital-
ization for an initial examination, then repeatedly after 2-3
days if the required therapeutic effect is not achieved and
then after 5-7 days in the absence or improvement of symp-
toms dynamics [1-5].

A number of patients with COVID-19 undergo multiple
imaging studies during hospitalization, whose cumulative
effect can significantly increase the total dose of radiation
received. The principle “as low as reasonably achievable”
(ALARA) states that whenever radiation is required, the im-
pact should be ALARA. Bearing in mind this important prin-
ciple, it is extremely important to remember that any CT scan
must be accompanied by a justification of examination and
optimization of radiation dose [6]. CT scans are significant aid
in diagnosing COVID-19; however, the potential to increase
radiation exposure of large numbers of patients across the
country cannot be ignored. Maintaining the balance between
the need for efficient imaging for rapid diagnostics and ef-
forts to minimize radiation exposure is important.

Effective dose of radiation during CT studies can be de-
creased by reducing the current and voltage of X-ray tube;
however, this leads to image quality distortion due to an
increase in the amount of noise and artifacts. A possible so-
lution to this problem is the introduction of technology adap-
tive to statistical iterative reconstruction of CT “raw data,” for
example, using the Adaptive Statistical Iterative Reconstruc-
tion (ASIR) technology and numerous similar methods [7-9].

Recently, data on the efficiency of low-dose CT (LDCT) in
diagnostics of COVID-19 compared with standard one were
presented in literature. It should be noted that CT with a ra-
diation dose of 0.2 mSv or less is considered low dose. In a
retrospective study, LDCT with iterative reconstruction in the
diagnostics of COVID-19 demonstrated sensitivity, specificity,
and predictive value of approximately 90%. Values of these
parameters increased to 96% if patients had symptoms for
>48 hours. Disease probability increased from 43.2% (be-
fore the test) to 91.1% or 91.4% (after the test) in patients
with a positive CT scan, whereas the probability of disease
decreased from 43.2% (before the test) to 9.6% or 3.7% (af-
ter the test) in patients with negative CT result. Additionally,
LDCT revealed an additive diagnostic advantage in patients
with concomitant bacterial pneumonia or an alternative di-
agnosis other than COVID-19 [10]. Research in this promising
field is actively performed.

This study aimed to analyze the quality and diagnos-
tic value of LDCT images of the lungs after applying the
ASIR processing algorithm and to assess the possibility
of reducing radiation exposure of patients diagnosed with
COVID-19.
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Patients undergoing inpatient treatment at the infec-
tious diseases department of the M.V. Lomonosov Moscow
State University Medical Research and Education Center took
part in a prospective, single-center, uncontrolled study. CT
examinations were performed upon patient admission and
discharge, then were repeated as clinically required during
the period of hospitalization, but at least once every 5 days.
Study 1 was conducted in all patients in the standard CT
mode, subsequent ones were conducted in LDCT mode.

The primary endpoint of the study was the absence of a
significant loss of diagnostic information during LDCT com-
pared to standard CT.

Inclusion criteria

Inclusion criteria included infection with COVID-19 veri-
fied by molecular genetic studies (polymerase chain reaction
method, PCR), and undergoing inpatient treatment.

Conducting conditions

The study was conducted in the infectious diseases de-
partment of the Moscow State University Medical Research
and Education Center with the involvement of patients who
were hospitalized with COVID-19.

Study duration
The study was conducted from April 21 to May 11, 2020.

Medical intervention description

CT of the lungs and chest organs was performed on a
32-row Somatom Scope CT manufactured by Siemens (Ger-
many). Studies were conducted with a slice thickness of
1 mm. The first study used a standard CT protocol with a
tube voltage of 120 kV, with an automatic modulation cur-
rent of 200-400 mA; with repeated CT, the LDCT protocol
was used with reduced parameters of tube voltage (100 or
110 kV) and automatic modulation of tube current of 40-120
mA; the ASIR algorithm was used to reduce radiation expo-
sure. All images obtained in DICOM format were stored in
the Radiological Information Network of the Moscow State
Scientific and Educational Center of Moscow State Univer-
sity. Syngo.via workstations (Siemens, Germany) were used
for CT processing and analysis.

A questionnaire survey was conducted among the doc-
tors of the Department of Radiation Diagnostics of the Medi-
cal Research and Education Center of the M.V. Lomonosov
Moscow State University to assess the diagnostic value of
LDCT in comparison with standard CT. The questionnaire
included a comparative description of two methods in iden-
tifying pathological processes, namely ground glass opacity
induration of the lung tissue, ground glass opacity induration
with reticular changes (thickened interlobular septa; “patch-
work” presentation, crazy paving), areas of consolidation
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of lung tissues, and lymphadenopathy. Medical specialists
evaluated each of the two methods on a five-point scale,
where the worst detectability of a particular pathological
process corresponded to 1 point, the best detectability cor-
responded to 5 points, and then the arithmetic mean was
calculated for each item. In conclusion, it was proposed to
assess the efficiency of LDCT diagnostics of COVID-19. Each
study was assessed by two medical specialists, and decision
was independently made in each case.

Primary study outcome

The primary outcome of the study was comparable di-
agnostic value of CT performed according to the standard
protocol and LDCT.

Ethical considerations

The subject of this article was approved at a meeting of the
Local Ethics Committee of the Medical Research and Education
Center of the M.V. Lomonosov Moscow State University, dated
May 25, 2020 (within the research project on diagnostics and
treatment of COVID-19 at the Medical Research and Education
Center of the M.V. Lomonosov Moscow State University).

Statistical analysis

Statistical analysis was performed using MS Office Excel
software.

RESULTS
Study participants

A total of 151 patients who underwent inpatient treat-
ment at the infectious diseases department of the Medical
Research and Education Center of the M.V. Lomonosov Mos-
cow State University participated in the study. The average
age of patients was 58 + 14.2 years; wherein 70 were wom-
en (46.4%) and 81 were men (53.6%). COVID-19 diagnosis
was confirmed by PCR results.

Main research results

Characteristics of study 1 (standard CT) included average
radiation exposure of 3.76 + 1.28 mSv; average computed
tomography dose index (CTDI) of 6.69 + 2.18 mGy; average
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dose length product (DLP) of 222.28 + 76.33 mGy/cm; aver-
age tube current of 2165.97 + 682.83 mA/s; and average tube
voltage of 129.43 + 3.21 mV. Characteristics of subsequent
studies (LDCT) included radiation exposure of 1.27 + 0.47
mSv; CTDI of 1.57 + 1.40 mGy; DLP of 73.01 + 19.94 mGy/
cm; tube current of 1182.55 + 366.55 mA/s; and tube voltage
of 111.79 + 5.73 mV. If a patient underwent several LDCT
studies, the arithmetic mean between them was considered
when calculating statistical indicators.

The following results were obtained from standard and
low-dose CT comparison. During LDCT, radiation exposure
decreased on average by 2.96 times, CTDI reduced by 2.6
times, DLP reduced by 3.1 times, tube current reduced by
1.83 times, and tube voltage reduced by 1.2 times. These
values are presented in Table 1.

Table 2 presents the results of the survey questionnaire
of doctors of the Department of Radiation Diagnostics of the
Medical Research and Education Center of the M.V. Lomono-
sov Moscow State University for assessing the diagnostic
accuracy of LDCT in comparison with standard CT.

Table 2 demonstrates that with LDCT, the efficiency of
detecting the main signs of viral pneumonia, and assess-
ment of the patient’s condition dynamics does not signifi-
cantly change compared to that of standard CT. It should
also be noted that, according to survey results, 7 doctors
(100% of those surveyed) believe that LDCT is effective for
COVID-19 diagnostics.

Here are illustrative examples of clinical cases
(Figs. 1-6), demonstrating the similarity of diagnostic val-
ue of two aforementioned research methods. Columns on
the left (a) show images of a standard CT scan performed
upon admission of the patient to the hospital, and columns
on the right (b) present LDCT over time. The top line of im-
ages indicates the pulmonary window mode, whereas the
bottom line indicates the mediastinal window mode. For
comparison, values of radiation exposure in each case are
presented. Time intervals between standard CT and LDCT
were 2-7 days; thus, the primary endpoint was reached in
all patients enrolled in the study.

Adverse events

During the study, no adverse events were recorded be-
cause of CT according to the standard protocol and LDCT.

Table 1. Comparative characteristics of standard and low-dose computed tomography

Indicator Standard CT Low-dose CT Difference, times
Average radiation exposure, mSv 3.76+1.28 1.27+0.47 2.96
CTDI, mGy 6.69+2.18 1.57+1.40 2.6
DLP, mGy/cm 222.28+76.33 73.01£19.94 3.1
Average tube current, mA/s 2165.97+682.83 1182.55+366.55 1.83
Tube voltage, mV 129.43+3.21 111.7945.73 1.2

Note. CT, computed tomography; CTDI (Computed Tomography Dose Index), average computed tomography dose index; DLP, dose

length product.
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Table 2. Results of the survey questionnaire of doctors of the Department of Radiation Diagnostics of the Medical Research and Education

Center of the M.V. Lomonosov Moscow State University

Characteristics Standard CT LDCT
Identification of the lung tissue induration by the type of ground glass opacity 5 5
Identification of induration areas by the type of ground glass opacity with reticu-
lar changes (thickened interlobular septa)—presentation of patchwork, crazy 5 4,43
paving
Identification of lung tissue consolidation areas 5 5
Detection of lymphadenopathy 5 4

Note. The average values of points given for each item are indicated: the minimum point is 1, the maximum is 5. CT, computed tomog-

raphy; LDCT, low-dose computed tomography.

DISCUSSION

Main research result summary

Study results confirm the absence of significant loss of
diagnostic information in chest LDCT in patients with COV-
ID-19; thus, chest LDCT can be routinely used for successful
diagnostics of this disease.

Main research result discussion

In the absence of etiotropic treatment of COVID-19, it
is especially important to diagnose the disease at an early
stage and immediately isolate the infected person. Accord-
ing to clinical guidelines, COVID-19 diagnosis is established
based on clinical examination, epidemiological anamnesis
data, and laboratory testing results [11]. The task of etiologi-
cal laboratory diagnostics comprises searching for severe
acute respiratory syndrome coronavirus 2 ribonucleic acid

Fig. 1. A 78-year-old patient: standard computed tomography at
admission was performed with a radiation exposure of 2.5 mSy
(a), and low-dose computed tomography was performed with ex-
posure of 1.0 mSv (b).

using nucleic acid amplification methods (reverse transcrip-
tion PCR, RT-PCR). Pathogen detection in a nasopharyngeal
smear is possible as early as a week before the onset of
clinical manifestations of the infection [12]. Nevertheless,
evidence that RT-PCR can give false negative results was
reported. Therefore, Ch. Long et al. [13] reported that 35
patients had CT signs of characteristic pneumonia among
36 patients diagnosed with COVID-19, whereas a positive
RT-PCR result was obtained for the first time in only 30
patients. In the remaining six cases, repeated testing was
performed, and the test result was positive in three of them
at the second test (after 2 days) and in three more cases at
the third test (after 6 days). Thus, CT sensitivity was 97.2%,
and RT-PCR in study 1 was 84.6% [13]. In a study by Y. Fang
et al. [14], similar results were obtained, when CT sensitivity
was 98% and that of RT-PCR was 71% (in study 1, the posi-
tive result was obtained in 36 of 51 patients with symptoms
of pneumonia on CT and a suitable epidemiological history;
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Fig. 2. A 72-year-old patient: standard computed tomography at
admission was performed with radiation exposure of 2.1 mSv (a),
and low-dose computed tomography was performed with expo-

sure of 0.87 mSv (b).
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Fig. 3. A 60-year-old patient: standard computed tomography at
admission was performed with a radiation exposure of 3.3 mSv
(a), and low-dose computed tomography was performed with ex-
posure of 1.1 mSv (b).

Fig. 5. A 40-year-old patient: standard computed tomography at
admission was performed with radiation exposure of 6.8 mSv (a),
and low-dose computed tomography was performed with expo-
sure of 2.0 mSv (b).

the diagnosis was further confirmed in 12 patients in study
2, 2 patients in study 3, and 1 patient in study 4). Assumed
reasons that the RT-PCR sensitivity in COVID-19 diagnosis
was lower than that of CT, including the imperfection of
nucleic acid amplification technologies, the variability of the
sensitivity threshold of tests from different manufacturers,
low viral load, and wrong technique of sampling material
for analysis. Additionally, the number of viral particles var-
ies depending on the site where the material for analysis is
taken, as evidence revealed that it is preferable to examine
the sputum first, followed by a nasopharyngeal swab in sen-
sitivity [15]. Thus, despite a negative RT-PCR result, CT is
recommended to visualize changes in the lungs if the patient
has characteristic symptoms and epidemiological history. In
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Fig. 4. A 46-year-old patient: standard computed tomography at
admission was performed with a radiation exposure of 5.6 mSv
(a), and low-dose computed tomography was performed with ex-
posure of 1.7 mSv (b).

Fig. 6. A 56-year-old patient: standard computed tomography at
admission was performed with a radiation exposure of 1.6 mSv
(a), and low-dose computed tomography was performed with ex-
posure of 0.87 mSv (b).

case of CT signs of pneumonia, it is necessary to take mea-
sures for emergency isolation of the patient, after which a
repeated laboratory analysis should be performed.

In the context of an increased number of CT examina-
tions, an issue of a significant increase in radiation expo-
sure and associated risk arise, for example, the evidence
that approximately 2% of cancers in the USA are associated
with radiation doses received as CT result [16]. Despite
the absence of major epidemiological studies on this sub-
ject, a large amount of data on radiation-induced cancer in
survivors of atomic bombs dropped on Japan in 1945 was
reported. In the subgroup of people who received radia-
tion doses in the range from 5 to 150 mSy, a significant
increase was observed in the overall risk of developing
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cancer, the average dose in this subgroup was 40 mSv
[17], and the average effective radiation dose for standard
chest CT is 5 mSv [18]. As for LDCT of the chest with radia-
tion exposure of 0.4 mSv, no sufficient evidence of efficacy
in the context of screening and diagnostics of COVID-19 is
currently reported [3].

Radiation dose received by a patient during CT scan de-
pends on tube current strength, voltage, scan time, slice
thickness, scan volume, and interval. Scanning time is re-
duced with the use of modern models of spiral tomographs;
however, radiation exposure sometimes even increases due
to increased current strength and scan volume. Under these
conditions, it is reasonable to resort to radiation dose reduc-
tion techniques. The dose is directly proportional to the tube
current. Recently, several studies showed that chest LDCT
at 10-140 mAs does not significantly reduce the image
quality, and nodular structures are still observed [19-21].
In their study, X. Zhu et al. [22] demonstrated a linear cor-
relation between the tube current and the DLP at a constant
voltage and scan time, and also assessed the feasibility of
optimization of radiation dose by reducing the tube current.
By comparing images obtained at different CTDI values, the
threshold value of this parameter was determined, which
enables to obtain images without a significant loss of in-
formation content (25 mAs), and with an increase in the
thickness of sections, the loss of image quality occurred
more slowly. Statistical analysis revealed no significant dif-
ference between images obtained at 115, 40, and 25 mAs.
Thus, 25 mAs or more is an acceptable exposure parameter
to provide satisfactory image quality for chest CT, whereas
CTDI at 25 mAs was reduced by 70% compared to CTDI at
115 mAs. Despite the accuracy of this parameter, clinicians
should be aware that its value may vary with different CT
systems; additionally, it must be adjusted considering the
biological characteristics of patients (for example, the ra-
diation dose should be increased for obese patients and
when examining the upper lobe of the lung due to the false
shadow caused by the scapula). Threshold values of CDTI
parameter obtained in this study are consistent with the
results of the study by T. Kubo et al. [23], where standard
and low-dose CTs were compared to determine the main
characteristics of lung lesions, which enabled us to confirm
or rule out malignant nature. Parameters of 20-50 mAs
were sufficient to determine the nature of the lesion without
additional standard CT. Edge characteristics, calcification,
and lobulation, as well as pleural response, standard and
low-dose CTs showed the same efficiency to determine pa-
rameters of lesions as structure.

For many years, the question of LDCT safety in screening
for oncological diseases, for example, lung cancer, has re-
mained controversial [24]. In their study, C. Rampinelli et al.
[25] analyzed the possible risks of radiation lung cancer and
leukemia in healthy people who had been regularly screened
using LDCT for 10 years. It turned out that the total cumula-
tive dose of radiation was approximately 9 mSv for men and
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13 mSv for women, which is equivalent to one standard CT
scan. Additionally, given that the average dose from back-
ground sources in the USA is approximately 30 mSv over
10 years, it can be concluded that LDCT screening accounts
for only 1/3 of the exposure to natural background radiation
over the same period. Study results revealed that after 10
years of screening with LDCT, in 5203 patients aged over 50
years old who are asymptomatic with smoking experience
of more than 20 pack-years, approximately 1.5 cases of lung
cancer, and 2.4 cases of other types of cancer were caused
by radiation exposure. Compared to the number of cases of
lung cancer detected, it can be calculated that approximately
100 cases of cancer are detected by screening per case of
radiation-induced cancer. Additionally, results of a study of
LDCT screening in the population of smokers aged 55-74
years showed a reduction in mortality from lung cancer by
20% [26]. All these data indicate that the LDCT method is
safe and effective for multiple repetitions within screening
or monitoring the dynamics of the patient’s condition in the
hospital despite the possible risks associated with radiation
exposure. There is no doubt about the importance of using
LDCT to reduce radiation exposure and ensure greater safety
of the study for the patient.

CONCLUSION

Comparative analysis of the efficacy and diagnostic value
of LDCT and CT performed according to a standard protocol
revealed that LDCT is not only a full-fledged alternative, but
also a preferable option, since its implementation can sig-
nificantly reduce the radiation exposure of the patient. Given
that during inpatient COVID-19 treatment, patient undergoes
several imaging studies, the issue of radiation safety be-
comes urgent. According to practicing doctors, the amount of
information provided by LDCT is not inferior to the standard
CT technique in quality and accuracy; therefore, for dynamic
studies, it is advisable to prefer LDCT, which is a method that
enables the radiation exposure reduction.
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BapuabenbHOCTb 3aKNIOMEHMIA NPU UHTEpNpeTaLum
KT-cHuMKoB: oauH 3a Bcex U Bce 3a 0 HOro

H.C. Kynbbepr' 2, P.B. Pewethukos' 3, B.M. Hosuk', A.b. Enunsapos', M.A. M'yces'*,
B.A. Fom6onesckuit', A.B. Bnananmumpckwit', C.IM. Mopo3os'

! Hay4HO-NPaKTUHECKMIA KIIMHUYECKWI LEHTP AMArHOCTUKM 1 TeNeMeULIMHCKIUX TEXHONOMMI [lenapTamMeHTa 3apaBooXpaHeHma r. MocKsl,
Mocksa, Poccuiickan Oefiepauma
2 (DefiepanbHblil UCCNEOBATENBCKMIA LiEHTP «MHbOpMaTUKa 1 ynpasnenmre» Poccuilckom akaneMum Hayk, Mockea, Poccuiickas Qepepaums
3 MepBblit MOCKOBCKMIA rOCYAapCTBEHHbIN MeAMLIMHCKMIA yHrBepcuTeT Menn WM. Cevenosa (CeyeHoBCKMit YHMBEpCUTET),
Mocksa, Poccuiickan Oefiepauma
“ MoCKOBCKMI MONUTEXHUYECKMI YHMUBEpCKTeT, Mockea, Poccuickan Oepepauma

AHHOTALUA

Ob6ocHosaHue. Pa3MeTKka HabopoB MedMLMHCKMX M306parKeHUA BO MHOTOM NoJlaraeTcA Ha CyObeKTUBHYIO UHTepnpe-
TauMio HabnioaaeMbix NOAO3PUTENBHBIX CTPYKTYP. Ha HAacTOALMIA MOMEHT He CyLLEeCTBYeT PeKOMEH0BAHHOIO NPOTOKONa
Mo OMpeaeneHmMIo 3TafoHHbIX faHHbIX (ground truth), oCHOBaHHBIX Ha Bpa4YebHbIX ONUCAHUAX.

Llene — aHanu3 npaBWNBHOCTM M COrNAcOBaHHOCTM OLIEHOK PEHTreHO0roB, MPMHUMABLLMX yyacTue B MOATOTOBKE
obwwenoctynHoro Habopa daHHbix CTLungCa-500; onpedeneHne B3aMMOCBA3M 3TUX MOKa3aTesel C KONMYECTBOM Creum-
anucToB, MPOBOJALLMX HE3ABUCMMYI0 MHTEPNPETaLMI0 M306parKeHUI, NOMyYeHHbIX MPU KOMMbTEPHO-TOMOrPadUYECcKoM
(KT) uccnegoBanum.

Mamepuan u Memodsl. Habop LaHHbIX, B pa3MeTKe KOTOPOro NMpUHUManu ydactue 34 peHTreHonora, BrovaeT 536
KT-nccnenoBaHMi naumeHToB M3 rpynmbl pUcka pasBuTuA paka nérkoro. Kawpoe KT-uccnepoBaHue 6bino HesaBUcMMo
WHTEPNpPeTUPOBaHO LLECTbIO CreuuManmcTamMu, Nnocne Yero 06HapyXKeHHbIe UMM NOA03PUTENbHbIE CTPYKTYPbl NPOXOAMAM
apbutpaxk OpyruM aKcnepToM. [1nA KarOoro sKcnepTa NOACYMTLIBANM KOJIMUECTBO UCTUHHO MOMOMKUTENbHBIX, OMHOMO-
TIOMUTENBHBIX, UCTUHHO OTPULATENbHBIX M JIOMHOOTPULLATENbHBIX HAXO0MOK, Ha OCHOBaHWM KOTOPbIX MPOBOAMIM OLIEHKY
AMarHoCTUYECKOM TOYHOCTU PEHTTeHONoroB. [InA aHanu3a cornacoBaHHOCTY MeAY 3aKMIOYEHWUAMM PEHTIEHOMIOM0B UC-
Mof1b30BaNN METPUKY NPOLIEHTHOr0 NoKa3aTens.

Pesynomamel. YBenvveHune KonmyecTaa creLyuanvcToB, POBOAALLMX HE3aBUCUMYIO MHTepnpeTaumio KT-nccnegosaHui,
BEAET K pPOCTY NPaBUMBHOCTY UX OLIEHOK MPY CHUXEHWUM cornacoBaHHocTW. Cpean GaKkTopoB, BAMAIOLLMX HA COMNAcoBaH-
HOCTb 3aKMIOYEHNIA MeXKy NapamMu UcciefoBaTeNiel, BbIAENIATCA PacXOHAEHNe MHEHUI MO NOBOZY HanMuMA NEFOYHOr0
oYara B KOHKPETHOM y4yacTKe KT-cHUMKa.

3aknoyeHue. YBennUeHVe YMCa HE3aBUCUMBIX NEPBUYHBIX MHTEPNPETaLMiA CNOCOBHO MOBLICUTL UX KOMOUHMPOBaH-
HY0 NPaBWNLHOCTb MPU YCNOBUM NpoBeAeHWUs apbuTpaxa, NPUYEM KBaNUGUKaLMA PEHTIEHONOMOB HE UMEET onpepens-
loLLlero 3HaYeHuUsa ANA Kauectsa aHanu3a. [poBedeHue nepBUYHON Pa3METKM CUaMU YeTbIpEX PEeHTreHON0roB ABNAETCA
ONTUMaJbHBIM C TOUKM 3PEHUA COYETaHUA NPaBUIBHOCTY UHTEPMPETALMK U €€ CTOMMOCTY.

KnioueBble cnoBa: KOMIMbOTEPHaA TOMOFpad)VIFI; Ha60p 0aHHbIX; 3TaJIOHHbIE OaHHble; COrjlaCoBaHHOCTb MeXAY 3aK/io-
YeHUAMMN.
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ABSTRACT

BACKGROUND: The markup of medical image datasets is based on the subjective interpretation of the observed entities
by radiologists. There is currently no widely accepted protocol for determining ground truth based on radiologists’ reports.

AIM: To assess the accuracy of radiologist interpretations and their agreement for the publicly available dataset
“CTLungCa-500", as well as the relationship between these parameters and the number of independent readers of CT scans.

MATERIALS AND METHODS: Thirty-four radiologists took part in the dataset markup. The dataset included 536 patients
who were at high risk of developing lung cancer. For each scan, six radiologists worked independently to create a report. After
that, an arhitrator reviewed the lesions discovered by them. The number of true-positive, false-positive, true-negative, and
false-negative findings was calculated for each reader to assess diagnostic accuracy. Further, the inter-observer variability
was analyzed using the percentage agreement metric.

RESULTS: An increase in the number of independent readers providing CT scan interpretations leads to accuracy increase
associated with a decrease in agreement. The majority of disagreements were associated with the presence of a lung nodule
in a specific site of the CT scan.

CONCLUSION: If arbitration is provided, an increase in the number of independent initial readers can improve their com-
bined accuracy. The experience and diagnostic accuracy of individual readers have no bearing on the quality of a crowd-
tagging annotation. At four independent readings per CT scan, the optimal balance of markup accuracy and cost was achieved.

Keywords: X-ray computed tomography; datasets as topic; ground truth; observer variation.
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INTRODUCTION

In 2017, S.P. Morozov et al. prepared a publicly avail-
able dataset, “Tagged results of computed tomography of
the lungs,” later called “CTLung500-Ca" [1, 2]. This set com-
prises 536 computed tomography (CT) chest X-ray images of
lung cancer high risk patients. Each study was independently
interpreted by six radiographers, and the findings were sub-
sequently reviewed by an additional expert. The markup used
an approach with a weak annotation of findings, i.e., the in-
dication of a limited number of nodules on the CT image,
which were localized by specifying the coordinates of the
enclosing spheres of maximum diameter with their subse-
quent clustering [2, 3]. S.P. Morozov et al. developed such a
markup and annotation protocol because the interpretations
of radiologists tend to be subjective and are not immune to
error. Under conditions in which the costs of false positive
(FP) and false negative (FN) findings are equally high, the
arbitration of primary interpretations can increase the cor-
rectness of conclusions [4]. Such arbitration is only effec-
tive if radiographers commit different mistakes. According
to P.G. Herman and S.J. Hessel, the probability that two or
more radiographers can make the same FP finding is low.
However, a significant proportion of FN errors, as a rule, is
made by two or more specialists [5]. Thus, the number of
radiologists who independently interpret CT scans can affect
significantly the correctness of markup and annotation.

STUDY AIM

The study primarily aimed to investigate the relationship
between the number of independent interpretations located in
the CTLungCa-500 CT scan database and the number and type
of errors made and to search for a CT scan interpretation pro-
tocol that promotes optimal tagging correctness. The second-
ary aim of the study was the analysis of agreement between
the radiographers who participated in the dataset preparation.

METHODS
Study design

In this work, we analyzed the data of a retrospective
multicenter observational study focused on the analysis of
prospects for the use of computer vision technologies in the
healthcare system of Moscow.

Inclusion criteria

The inclusion criteria were patients of polyclinics in Mos-
cow, aged 50-75 years, who underwent a diagnostic CT study
referred by an attending physician due to suspected lung cancer.

Conditions in conducting the experiment

In accordance with the inclusion criteria, 3897 CT ex-
aminations were downloaded from the Unified Radiological
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Information Service. A total of 550 CT examinations were se-
lected randomly from this array to create a dataset, “Tagged
results of computed tomography of the lungs.” Exactly 14
CT scans were excluded from the sample due to non-com-
pliance with the inclusion criteria or the protocol of medical
intervention.

Study duration

The dataset included the results of CT examinations con-
ducted from January 01, 2015 to December 31, 2017.

Description of the medical intervention

The recommended scanning parameters for adult pa-
tients (height: 170 cm, body weight: 70 kg) included the au-
tomatic modulation of the current on the tube at a voltage of
120 kV, field of view of 350 mm, slice thickness of 1.5 mm
or less, and the distance between adjacent slices the same
as the slice thickness or less. Scanning was performed with
the patient in the supine position, with the scanning directed
from the diaphragm to the apex of the lungs within a single
breath-hold. Reconstruction kernels were specific for a par-
ticular tomographic scanner manufacturer, namely, FC50,
FC51, FC52, FC53, and FCO7 for lungs and FCO7, FCO8, FCO9,
FC17, and FC18 for soft tissues for Toshiba machines; B70,
B75, and B80 for Siemens devices; Y-Sharp and LUNG for
lungs and SOFT for soft tissues for Philips devices; LUNG
for lungs and SOFT for soft tissues for GE (General Electrics)
devices.

Primary study outcome

Two groups of volunteer radiographers participated in
the tagging and annotation of the studies. Representatives
of Group 1 (primary experts), consisting of 15 specialists
with working experience of 2—10 years or more, performed
the primary interpretation of CT scans. In accordance with
the developed methodology, doctors searched for pulmo-
nary nodules with sizes from 4 mm to 30 mm on CT images
and retained the information about the findings, such as
localization of pulmonary nodules (position of the center
of the finding by defined by two dimensions in the image
and the slice number); diameter of the finding; type of pul-
monary nodule (solid, part solid, or ground glass opac-
ity nodule). Medical specialists were advised not to mark
calcified and peri-fissural lesions in the lungs and not to
mark more than five of the largest pulmonary nodules on
a single CT scan. Each study was reviewed independently
by six radiographers to reduce the probability of missing
potential pulmonary lesions. Then, one of the participants
in Group 2 (arbitrators), consisting of three radiologists
with 10 or more years of working experience, reviewed
the tagging made by the radiologists of Group 1 to assess
the significance of each mark. The arbitrators also as-
sessed the malignancy of the lesions detected, referring
them to the category of “malignant” or “benign,” guided by
the Fleischner Society recommendations [6].
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Ethical considerations

The study, whose data were used for the analysis in this
work, was approved by the Independent Ethics Committee
of the Moscow Regional Branch of the Russian Society of
Roentgenologists and Radiologists (Protocol No. 2 1-11-2020
dated February 20, 2020). All procedures performed on pa-
tients during the study were in accordance with the stan-
dards of the regional and national research committee and
the Declaration of Helsinki and the Taipei Declaration of the
World Medical Association.

Statistical analysis

The numbers of true positive (TP), FP, true negative (TN),
and FN findings were counted for each radiologist who per-
formed the initial interpretation to determine the specificity
(Sp) and sensitivity (Se) of individual specialists. The cases
were considered TP if the opinions of the radiologist and the
arbitrator coincided about the presence and type of a pul-
monary nodule (solid, part solid, or ground glass) in a par-
ticular area. The cases were FP if the arbitrator recognized
the primary expert's assessment as erroneous regarding
the presence or type of a pulmonary nodule in a given area.
The cases were considered TN when the radiologist did not
mark the entity, which in the opinion of the arbitrator, was
mistaken for a lung nodule by one or more of the other five
primary experts. Finally, for FN cases, the radiologist did not
recognize a pulmonary nodule that was correctly identified
by one or more of the five other participants, in the opinion
of the arbitrator. When analyzing the data, we assumed that
the arbitrator’s opinion is always correct.

Se was calculated by the following equation:

Se= —"° . (1)
(TP +FN)
Sp was calculated as follows:
TN +FP
For each participant, Youden's index (J) was determined:
J=Se+Sp-1. (3)

To calculate the accuracy indicator (Acc) of different
samples of primary experts, we defined the TP as the cases
when at least one specialist from the sample identified cor-
rectly, in the opinion of the arbitrator, a pulmonary nodule
in a specific area of the CT scan. The TN results included
cases in which at least one specialist from the sample did
not notice a lesion, which was mistaken, in the opinion of the
arbitrator, for a pulmonary nodule by any other participant in
the study. The accuracy was calculated as follows

(TP +TN)
(P+N)

where P is the number of correct findings, and N is the num-
ber of incorrect findings.

Acc= % 100, (4)
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A number of metrics are available for the assessment of
agreement among one or more researchers. 0. Gerke et al.,
in their recommendations for the systematization of agree-
ment studies, suggested using the Bland—Altman analysis
[7]. Other common metrics are Cohen's [8] and Fleiss’ [9]
kappa. However, with all the advantages of these methods,
they are difficult to interpret. Thus, the authors of this work
settled on the simplest option, that is, the percentage agree-
ment between researchers, which disregards the factor of
random coincidences of radiologists’ conclusions but at the
same time is intuitively comprehensible and reflects reliably
the main regularities, provided that repeated experiments
are performed. The percentage was calculated as the pro-
portion of nodules for which expert opinions (presence, type)
coincided in relation to the total number of jointly tagged
nodules:

Matches

Consistency = , x 100. (5)
Matches + Mismatches

Statistical analysis was performed using the dplyr [10],
irr [11], and ggplot2 [12] packages for R 3.6.3 [13]. When
preparing the data, we used self-written scripts in the Py-
thon 3.8.2 language [14].

RESULTS
Research objects

A total of 31 radiologists took part in the primary
interpretation of CT images. Each radiologist from the
initial cohort of 15 specialists was replaced by another
specialist during the study due to refusal or inability to
continue the study; one participant was replaced twice.
The radiographers’ workload was distributed unevenly.
Each specialist from the initial cohort participated in la-
beling and annotating an average of 1050 + 140 lesions.
The radiologists who replaced them tagged an average
of 110 + 42 lesions.

Based on the tagging results, the dataset included 72 CT
scans, in which radiologists did not find pulmonary nodules
from 4 mm to 30 mm, and 464 CT scans with pulmonary
nodules, comprising 3151 findings confirmed by the arbitra-
tor. A total of 1761 lesions were classified by experts as pre-
sumable malignant, 445 lesions as benign, and 945 entities
of a different nature (they contained calcifications, adipose
tissue, fibrous tissue, or fluid).

Key research findings

Se and Sp of radiographers involved in the tagging
During the work on the dataset, a three-digit identifica-
tion number (ID) was assigned to each radiologist. In the
case of replacement of a specialist, the new participant
inherited his ID with an additional “+" symbol. The aver-
age value of Se was 34.9% (95% confidence interval [Cl]:

30.4-39.4), and that of Sp was 78.4% (95% Cl: 74.9-81.9),
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which was noticeably inferior to the minimum indicators
demonstrated by radiologists in a similar study of D. Ardila
et al., namely, 62.5% (95% Cl: 54.4-70.7) and 95.3% (95%
Cl: 94.0-96.6), respectively [15].

The difference noted was possibly caused by the tag-
ging recommendations, guided by which the primary ex-
perts tagged a maximum of five nodules in the image. This
recommendation is based on the results of the NELSON
study, according to which the risk of primary cancer in-
creases with increase in the number of lesions to four but
decreases for patients with five or more lesions [16]. In
cases of multiple lesions (>5), this approach can artificially
underestimate the diagnostic accuracy of primary experts
because it introduces an additional degree of freedom as-
sociated with a specific set of lesions that each radiologist

Table 1. Diagnostic correctness of study participants.
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has tagged. This uncertainty can be corrected by introduc-
ing an alternative classification of findings, recognizing
the cases as TP when the primary expert tagged at least
one confirmed nodule on the CT scan. With this assess-
ment scheme, the average Se of primary experts was
66.2% (95% Cl: 62.1-69.9), and the Sp was 78.5% (95% Cl:
72.3-84.8). However, the markup was aimed at creating a
dataset designed to train artificial intelligence algorithms,
and every suspicious structure on a CT image was of in-
terest. For this reason, in this work, the criteria set out in
the Methods section were used to assess the diagnostic
accuracy. In accordance with these criteria and based on
Youden’s index, the radiologist with ID 012+ showed the
highest accuracy (J = 0.472), and the specialist with ID
008+ had the owest (J = -0.188) (Table 1).

Indicators for individual nodules

Expert ID
Se, % Sp, % Youden's Index Number of tagged nodules*
000 39,52 73,17 0,127 1079
001 32,63 79,04 0,117 1068
002 28,25 80,19 0,084 1045
003 44,05 67,75 0,118 1094
004 31,37 68,75 0,001 844
005 33,08 72,76 0,058 1222
006 36,91 71,32 0,082 1085
007 37,31 73,43 0,107 884
008 42,01 68,00 0,100 1227
009 36,79 79,50 0,163 1265
010 38,62 71,16 0,098 1166
011 26,05 79,51 0,056 853
012 33,97 71,88 0,058 1045
013 38,52 77,40 0,159 1028
014 37,16 82,32 0,195 850
000+ 31,63 79,17 0,108 194
001+ 52,94 82,46 0,354 108
002+ 62,50 57,14 0,196 46
003+ 60,71 86,21 0,469 86
004+ 27,78 86,49 0,143 110
005+ 41,49 75,86 0,173 152
006+ 31,34 74,14 0,055 125
007+ 29,73 85,71 0,154 86
008+ 18,99 62,16 -0,188 176
009+ 25,76 85,11 0,109 113
010+ 25,00 75,36 0,004 145
011+ 31,58 93,33 0,249 68
012+ 53,85 93,33 0,472 97
013+ 34,29 85,71 0,170 77
014+ 17,95 100,0 0,179 63
000++ 0,00 94,87 -0,051 48

Note. *All lesions revealed in CT examinations were considered in the tagging in which the expert participated, regardless of whether he recognized them or not.
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Influence of the number of researchers
on the interpretation accuracy

Interpretation by two primary experts. In this analysis, a
sample of 97 CT studies was considered and interpreted by
the radiologist (ID 012+) who showed the highest Youden's
index score among all participants (Table 1). With this sam-
ple size, all estimates obtained may differ from the average
for the full data set by no more than 10% [17]. The sample
tagged by this specialist contained 53 solid pulmonary le-
sions, 6 part solid, and 5 ground glass lesions. In addition,
33 entities discovered by radiologists were not confirmed in
the course of arbitration. The accuracy of assessments by
Radiologist 012+ was 65.98%, that is, he correctly identified
28 solid nodules and avoided 32 out of 33 FP errors made
by other specialists in the same studies while recognizing in-
correctly 2 solid and 1 part solid nodules and committing 34
FN errors. In addition, the radiologist with ID 012, who had
one of the lowest Youden’s index scores (0.058, place 24;
Table 1), also participated in tagging all 97 CT studies in the
sample. This specialist correctly recognized 32 solid lesions,
1 part solid, and 1 ground glass lesion and avoided 18 FP
errors. With the agreement between researchers equaling
59.8%, the joint accuracy of their estimates was 81.44%. The
sources of disagreement were the discrepancy between the
opinions within the pair regarding the presence of a lesion in
a particular area (92.3% of cases) and the type of pulmonary
nodule (7.7% of cases).

The distribution of CT studies among specialists was per-
formed in a random manner. For this reason, all 97 CT stud-
ies in the studied sample were interpreted only by primary
Experts 012 and 012+. In addition, 17 radiographers par-
ticipated in sample tagging (the number of tagged nodules
is indicated in the brackets for each ID), namely, 000(11),
002(54), 003(30), 004(27), 005(18), 006(40), 007(10),
008(16), 009(17), 010(32), 011(24), 013(30), 014(52), 004+(7),
005+(10), 011+(1), and 014+(9). They enabled the compari-
son of the situation in which the second opinion on all stud-
ies in the sample was expressed by one specialist, with the
crowd-tagging model, in which an opinion is provided by a
participant selected randomly from a certain expert group
with variable Sp and Se indices.

Group 1 included six researchers (Table 2). The average
Youden’s index in this group was 0.078 + 0.045 (maximum
value: 0.127; minimum value: 0.001), which exceeded the
indicator of Radiologist ID 012 (0.058). Nevertheless, the

Table 2. Distribution of tagged suspicious structures in Group 1.
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agreement of estimates with Radiologist 012+ was 40.2%,
and the joint accuracy of the estimates was 74.23%. The
source of most of disagreements in the pair (97.4%) was
the divergence of opinions about the presence of pulmonary
nodules.

In a repeated similar experiment, a group with a differ-
ent composition of participants was analyzed (Table 3). The
number and composition of participants differed between
Groups 1 (Table 2) and 2 (Table 3). Moreover, the distribution
of the number of nodules tagged by each expert was uneven.

The mean Youden's index in Group 2 was 0.099 + 0.055
(maximum: 0.173, minimum: 0.01) and was higher than
that by Radiologist 012 and in Group 1. The agreement and
joint accuracy of the assessments of participants in Group
2 and Radiologist 012+ were the highest of the three con-
sidered options for the interpretation of CT studies by two
experts, accounting for 71.1% and 83.50%, respectively. The
disagreement between researchers in 89.3% of cases was
associated with the presence of a pulmonary nodule in this
area and with its type in 10.7%. The average accuracy of
interpretations during the primary tagging by two specialists
in any combination was 79.72% + 4.87%.

Interpretation by three or more researchers. When
analyzing the interpretation by three or more researchers,
all groups included Radiologists 012 and 012+. With the
primary tagging and annotation by three radiologists, the
agreement of their estimates ranged from 32.0% to 42.3%,
and the average joint accuracy was 89.18% + 5.10%. The
inter-observer agreement between the assessments of
four independent specialists decreased to 16.5% = 5.7%,
whereas the average joint accuracy increased to 93.82%
+ 3.57%. For five radiographers, the inter-observer agree-
ment continually declined to 9.8% + 8.1%, and the accuracy
continually increased to 97.94% + 0.14%. Finally, the joint
accuracy of the six experts was 100% under our experi-
mental conditions, with the agreement of 3.1% (Fig. 1).
Thus, a significant inverse correlation existed between the
accuracy and agreement of expert assessments (r=-0.78,
p < 0.05).

In support of the conclusions by P.G. Herman and
S.J. Hessel [5], in a sample of 97 studies, when interpreted
by six specialists, 85.7% of FP errors were made by one ex-
pert, 11.4% by two experts, and 2.9% by three experts at the
same time. All six experts identified correctly 8.1% of posi-
tive findings in the sample. Meanwhile, 25.8% of FN errors

Researcher ID 000 002 003 004 005 006
Number of tagged nodules 11 54 9 3 11 9
Table 3. Distribution of tagged suspicious structures in Group 2.
Researcher ID 005+ 010 003 004 005 006 008 009
Number of tagged nodules 10 10 21 9 7 31 8 1
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Fig. 1. Accuracy and agreement of estimates as a function of the number of radiologists participating in the primary tagging. The 95% Cl
is presented in gray. The points correspond to different samples of primary experts. For experiments with two, three, and four experts,
three different samples were selected from the initial six radiologists; two various samples were used for five experts.

were made by one expert out of six, 8.1% by two experts, the cost of involving additional experts in the interpretation
8.1% by three experts, 19.3% by four experts, and 30.6% by  of CT images. Thus, the improvement in accuracy can be bal-

five experts (Fig. 2). anced against the increased cost of annotating the studies.
Given that volunteer radiologists participated in tagging
Markup cost the dataset, their work was not paid. Thus, we calculated

To assess the optimal efficiency of tagging from the the cost of tagging in terms of the time spent by the ex-
standpoint of the rational use of resources, we considered perts. On the average, the primary expert spent 12 min on

Fig. 2. Examples of CT studies with significant disagreement (a and b; CTLungCa-500 AN RLADD02000018919, ID RLSDD02000018855)
and full consistency (c and d; CTLungCa-500 AN RLAD42D007-25151, ID RLSD42D007-25151) between experts. The studies are presented
in frontal projection in pulmonary (a and c) and soft tissue (b and d) modes. The vertical division is 50 mm, and the horizontal division
is 100 pixels. The radiologists’ marks are presented with different colors: a and b: the nodule was tagged by five primary experts out of
six; four experts classified it as a solid type, and one expert classified it as a semi-solid one. The arbitrator disagreed with their opinion,
recognizing the finding as benign calcification; ¢ and d: all six primary experts and the arbitrator classified the lesion as a potentially
malignant solid.
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Table 4. Estimated cost of error elimination

Number of primary Number of errors Cost,
experts eliminated min/error

2 15 129,3

19 183,8

4 29 173,9

5 31 212,8

6 33 246,9

the interpretation of one CT image, and the arbitrator spent
4 min. In the present study, the cost of eliminating error C in
the studied sample of 97 CT images was calculated as the
difference in the average cost of tagging by a given number
of primary experts with the involvement of an arbitrator and
the cost of tagging by one radiologist without the involve-
ment of an arbitrator divided by the number of errors elimi-
nated (N,,,):
(n><12><97+n><4><97)—12><97' 6)
Nerr

where n is the number of primary experts.

Expert 012+ committed 33 FP and FN errors. Table 4
presents the number of errors eliminated due to attracting

<]

C=

300

2501

200+

1501

100+

Number of coincidences

Number of coincidences
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additional experts and conducting arbitration and the cor-
responding cost of eliminating the error. We observed a
dependence according to which each new primary expert
increased the cost of error elimination by 42.5 + 10.7 min,
excluding one point. The tagging of the dataset by four pri-
mary experts with subsequent arbitration was accompanied
by a rapid increase in the number of eliminated errors and a
decrease in cost (Table 4).

Additional research findings

Given the aspects of the study design, in which each ex-
pert interpreted an individual CT scan only once, this study
did not assess the intra-observer agreement among individ-
ual radiologists. The average value of inter-observer agree-
ment between pairs of specialists was 60.5% + 5.3%, with
a minimum value of 53.1% and a maximum value of 73.0%.

Another way to assess the agreement between primary
experts was the analysis of positive findings of each radi-
ologist (Fig. 3). For each representative of the initial cohort,
the maximum proportion of detected nodules (37.6% + 5.4%)
corresponded to unique findings that were not recognized
by other experts (Fig. 3a). Then, in descending order,
the findings were approved by one (21.4% + 2.8%), two
(14.0% + 2.0%), four (9.5% = 2.3%), three (9.2% + 1.8%),
and five (8.1% + 3.1%) primary experts. The proportion of

o s WL || | I (|

000+ 001+ 002+ 003+ 004+ 005+ 006+

007+ 008+ 009+ 010+ 011+ 012+ 013+ 014+

Primary expert ID

Fig. 3. Agreement between primary experts: a. representatives of the initial cohort of 15 radiographers; b. replacement radiographers. The
data for the expert with ID 000++ are not given due to the small number of lesions annotated. For each radiologist, Column 1 corresponds to
the number of lesions tagged uniquely by that specialist (none of the other five experts recognized this finding). The following are columns
corresponding to cases where the lesion identified by the radiologist was noted by one, two, three, four, and five other primary experts.
The graph disregards the approval of the arbitrator and the differences in the opinion between radiologists about the type of lesion.
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unanimously approved findings exceeded 10% for four ra-
diologists from the initial cohort (ID 002, 004, 007, and 010).
None of these experts was included in the leading group
in terms of Youden’s index, which was calculated in accor-
dance with the methodology proposed in this work. More-
over, Radiologist 004 showed the poorest performance in
the cohort for this indicator (Table 1). Meanwhile, Radiologist
014, which showed the highest Youden’s score in the cohort
(0.195), did not stand out among his colleagues in terms of
the consistency of positive findings (Fig. 3a).

The cohort of radiographers who replaced the initial pri-
mary experts had a different distribution of finding agree-
ment (Fig. 3b). The maximum proportion of identified nodules
(28.9% + 18.2%) was still represented by unique findings.
This result was followed by findings identified simultane-
ously by two (23.3% + 11.0%), three (13.3% + 10.7%), five
(13.2% + 11.9%), six (11.5% + 9.8%), and four (9.7% + 7.6%)
experts. This cohort had eight radiographers (ID 000+, 004+,
006+, 010+, 011+, 012+, 013+, and 014+), for which the pro-
portion of unanimously approved positive findings exceeded
10%, and the value was above 20% for four of them (ID 000+,
010+, 011+, and 014+). Nevertheless, these indicators may
be due to the small number of positive findings in this co-
hort, which is indirectly evidenced by the high variation in
their consistency, expressed in terms of mean values and
standard deviations. For example, Expert 014+ participated
in the interpretation of CT studies, where other experts iden-
tified 63 entities (Table 1). This expert tagged seven nodules,
one of which was identified by another expert, three by two
experts, one by five experts, and two nodules by six experts
(Fig. 3b). Furthermore, the expert committed 32 FN errors,
thus ignoring approximately 50% of true positive findings.
For this cohort, no correlation was registered between
the consistency of the positive findings and the expert's
Youden's score.

DISCUSSION
Summary of the main research findings

Our results demonstrated that an increase in the number
of specialists conducting an independent interpretation of CT
studies led to an increase in the accuracy of their estimates,
and the level of qualification showed no significant effect
on either the consistency of opinions of radiologists or their
joint accuracy. Among the factors affecting the inter-observ-
er agreement between the pairs of researchers, a discor-
dance of opinions was observed concerning the presence of
lesions in a particular area of the CT scan.

Main research results

No consensus is currently available regarding the rec-
ommended number of radiologists to participate in the pri-
mary markup and annotation of medical imaging datasets. In
general, this number ranges from one [18, 19] to four [20].
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Only the work by P.G. Herman and S.J. Hessel addressed
this issue; according to their research, the number of error-
free descriptions gradually decreases with the increase in
the number of specialists providing independent interpreta-
tions of studies [5]. Although this finding piques interest, it
is of little practical value because the arbitrage model is, in
principle, based on the assumption that primary interpre-
tations comprise errors. Moreover, its efficiency increases
provided that these errors are different.

The last statement is not always true. In particular, the
results of this work indicate that radiologists committing dif-
ferent mistakes does not lead automatically to an increase
in the joint accuracy of their conclusions. In an experiment
with two specialists who performed the primary interpreta-
tion of CT images, the highest level of disagreement was
registered in pair 2 (agreement 40.2%), which had also the
lowest accuracy of the three considered pairs (74.2% ver-
sus 81.4% and 83.5%). In addition, pair 3 showed the high-
est accuracy value with the maximum agreement (71.1%).
Nevertheless, according to the data obtained in this work, a
significant negative correlation existed between the agree-
ment of expert assessments and their accuracy (r = -0.78).
Thus, at the initial interpretation by two radiographers, the
agreement of 57.0% + 15.6% was noted, with the accuracy of
79.7% + 4.9%. For five radiographers, these indicators were
equal to 9.8% =+ 8.1% and 97.9% + 0.1%, respectively, and
this dependence was retained in all the considered variants
of dataset tagging (Fig. 1).

According to the results of this study, the optimal com-
bination of accuracy and markup cost can be achieved by
an approach involving four primary experts and subsequent
arbitration (Table 4). In that case, a rapid increase in the
number of eliminated errors was observed in comparison
with the tagging by three radiologists, accompanied by a
decrease in the time spent on eliminating one error (-9.9
min). The involvement of additional primary experts led to a
further increase in the accuracy of interpretations. However,
this finding was due to an increase in the cost of eliminating
errors by an average of 42.5 + 10.7 min.

In the present work, when classifying the assessments
of primary experts to the categories of FN, TN, FP, and TP,
we relied on the assumption that all pulmonary nodules
will be tagged on each CT scan. However, the study results
indicated that the study participants limited themselves to
the five largest pulmonary lesions on CT scans, following
the recommendations given to them. Thus, some pulmonary
nodules were ignored by individual radiographers, which
affected their diagnostic accuracy and the inter-agreement
values in expert pairs. Nevertheless, differences in the
opinions between primary experts are a desirable outcome
when using arbitration because they expand the range of
tagged lesions. This condition reduces the proportion of
FN findings, even under artificial restrictions on the num-
ber of nodules to be tagged. One of the main outcomes of
this work is that consensus among several radiographers
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is not a prerequisite for proper tagging of datasets. The
arbitrators bear the main responsibility because they must
correctly interpret all entities noted by the primary experts
(Figs. 2a and 2b).

Research Limitations

The main limitation of this work was the model for
determining the ground truth, that is, the findings that
should be considered pulmonary nodules. When inter-
preting CT scans, radiologists lacked access to the clini-
cal, biological, and genomic data of patients. Moreover,
the set did not contain two studies that spread out over a
period of time, which would have enabled the assessment
of the dynamics of development of lesions, for any of the
patients. We also proceeded from the assumption that the
opinion of the arbitrator is always correct, and we inter-
preted the disagreements between the primary experts
and the arbitrator always in favor of the latter. Howev-
er, the set presented a number of examples that raised
doubts about the reliability of this approach. In particular,
19 pulmonary lesions were tagged by the arbitrator as
both benign and malignant. This result is consistent with
the results of S.J. Hessel et al., who demonstrated that
arbitrators can resolve correctly about 80% of disagree-
ments between primary experts [4].

Another limitation of the work was the inability to assess
the reproducibility of the conclusions of individual radiogra-
phers. A limited sample was used to achieve the main objec-
tives of the study. For more reliable statistics, the optimal
approach would be the hootstrap method. Finally, the as-
sessment of the diagnostic accuracy of the primary experts
in the present study relied on the assumption that they would
mark all pulmonary nodules. If more than five lesions were
observed on the CT scan, this assumption was in conflict
with the recommendations for tagging, which can affect the
final individual indicators of Se and Sp. To compensate for
this methodological limitation, the study authors attempted
to assess the consistency in the number of positive findings
for each primary examiner approved by two, three, four, and
five other radiographers (Fig. 3). However, such an analysis
neglected the FN errors, and therefore, its results showed
no correlation with the obtained values of Youden’s index for
each expert. In addition, this study analyzed the results of
interpretation of standard dose CT scans. Thus, its findings
may not apply to the data obtained from screening studies
characterized by the use of low-dose and ultra-low-dose
CT protocols.
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CONCLUSION

Despite its limitations, this work demonstrated con-
vincingly that an increase in the number of independent
primary interpretations can increase their accuracy, if the
arbitration is performed. In addition, the qualifications of
radiologists are not the decisive factor of the quality of
their analysis because according to the results obtained,
the joint accuracy of their assessments was independent
of individual Youden’s indices. The optimal combination of
accuracy and cost of tagging was achieved during the ini-
tial independent interpretation of CT examinations by four
experts. This statement created a theoretical basis for the
development of requirements for artificial intelligence al-
gorithms intended for use in the diagnosis of diseases by
tagging suspicious structures on CT scans, guiding and at-
tention of radiologists. In addition, the results obtained in
this work enable the substantiation of the project model
for crowd-tagging of datasets, in which an increase in the
number of taggers will lead to a decrease in agreement
and a simultaneous increase in the quality of the final
product, given arbitration.
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Ponb cucteMbl KOHTPONIA KayecTBa Ny4eBoOM
AVNarHOCTUKM OHKOJIOrMYecKuX 3aboneBaHum
B pagUOMUKe

A.H. Xopyas, E.C. Axmag, [1.C. CemeHoB

Hay4Ho-npaKTU4ecKuUi KNMHUYECKUIA LIEHTP AMarHOCTUKM U TeNeMeaULMHCKUX TeXHOMOrWiA [lenapTamMeHTa 3paBooxpaHeHusa ropoaa Mockssl,
MockBa, Poccurickan QOepepauma

AHHOTAUNA

CoBpeMeHHble MeToAbl MeAMLMHCKOW BM3yanusauuMu AaloT BO3MOMHOCTb KauYeCTBEHHO M KONMYECTBEHHO OLIEHWUTb
KaK TKaHW 0NyX0nu, Tak W MPOCTPaHCTBO BOKpYT Heé. lporpecc B MHdOpMaTMKe, 0COHEHHO C yyacTMeM METOA0B MaLLMHHOMO
06y4eHMA B aHanu3e MeJULIMHCKUX M306paxkeHui, No3BonsAeT npeobpa3oBbiBaTh iobble paguonoruieckue UCCnefoBaHuaA
B NoAJaloLLMecs aHanu3ay Habopbl daHHbIX. Cpeay 3TUX HabopoB AaHHbIX 3aTEM MOMHO MUCKaTb CTAaTUCTUYECKM 3HAUYMMble
KOPPENALMU C KNMHUYECKUMM COBLITUAMM, YTOObI BNOCEACTBMM OLLEHUBATbL MX MPOrHOCTUYECKYI0 3HAYMMOCTb M CMocob-
HOCTb NpefCKasblBaTb TOT UM UHOM KNMHUYECKUI Ucxod. ITa KoHLenuwma Brepsble bbina onucana B 2012 r. u nonyumna
Ha3BaHWe «pagunoMuKax». Ocobylo 3HaUMMOCTb OHA NPEeACTaBNAET ANA OHKONOMMK, NOCKONbKY M3BECTHO, YTO KarablA TUN
ONYyX0M MOMET NOAPa3AeNATLCA Ha MHOMKECTBO Pa3fIMUHbIX MONEKYNAPHO-TeHETUYECKMX MOLTUMOB, 1 NPOCTO BU3YaNlbHOM
XapaKTEPUCTUKM Cenyac yre HeocTaTo4Ho. A pagMoMuKa npy abconioTHOM HEMHBA3MBHOCTM crnocobHa obecneumnTs Bpa-
Ya-paguonora UHGpopMaLIMen, KOTOPYIO MOPO MOKET LaTb TOSbKO MMCTONOMMYECKOe MCCNef0BaHMe BUMONCMIAHOrO MaTe-
puana. 0gHaKo, Kak U B Niob0oi METOAMKE, OCHOBAHHOM Ha MCMOMb30BaHUM BONbLIMX JaHHbIX, 30€Ch 0CTPO BCTAET BOMPOC
0 KauecTBe MCXOAHOM UHPOPMALMM [aHHBIX, NOTOMY KaK 3T0 NpSMbIM 00pa3oM MOMKET NOBUATL Ha UCXOL aHanv3a u fatb
HEBEPHYI0 AMArHOCTUYECKYI0 MH(pOpPMaLIMIO.

B nutepatypHoM 0630pe Mbl aHanuM3vpyeM BO3MOMHbIE MOAX0Abl K 06ecreyeHnio KayecTBa UCCNefoBaHWA Ha BCEX
3Tanax — 0T TEXHUYECKOr0 KOHTPONA 3a COCTOAHUEM OMarHOCTUYECKOro 060pyNoBaHNA [0 U3BMEYEHUA MapKepOB BU3Y-
anu3aumu B OHKOOMMKM U BbIYUCTIEHWA UX KOPPENALMU C KIMHUYECKUMU JaHHBIMU.

KnioueBble cyioBa: pagnoMUKa; lydeBasn AMArHOCTMKA; KOHTPOJb Ka4eCTBa; CTaHAapTU3aLMA; OMyX0/; OHKOOT MYEecKUue
3abonesaHus.
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Xopyan AH., Axvap E.C., CemenoB [1.C. Posib cuCTEMbI KOHTPOMA KavecTBa fy4eBoi AMarHOCTUKM OHKONOMMYecKux 3abonesaHnin B pagnomuike // Digital
Diagnostics. 2021. T. 2, N° 2. C. 170-184. DOI: https://doi.org/10.17816/DD60393
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The role of the quality control system for diagnostics
of oncological diseases in radiomics

Anna N. Khoruzhaya, Ekaterina S. Akhmad, Dmitry S. Semenov

Moscow Center for Diagnostics and Telemedicine, Moscow, Russian Federation

ABSTRACT

Modern medical imaging methods allow for both qualitative and quantitative evaluations of tumors and issues
surrounding them. Advances in computer science and big data processing are transforming any radiological study
into analytic datasets, especially with the use of machine learning in medical image analysis. Among these datas-
ets, statistically significant correlations with clinical events can then be searched for to subsequently assess their
predictive value and ability to predict a particular clinical outcome. This concept, known as “radiomics,” was first
described in 2012. It is particularly important in oncology because each type of tumor can be subdivided into many
different molecular genetic subtypes, and simple visual characteristics are no longer sufficient. Moreover, as an ab-
solutely noninvasive method, radiomics can provide a radiologist with additional information that would otherwise
be unavailable without a histological examination of biopsy material. However, as with any methodology based on
the use of big data, the question of the quality of the initial data becomes critical, because this can directly affect the
outcome of the analysis and provide incorrect diagnostic information.

In this literature review, we examine potential approaches to ensuring the quality of research at all stages, from
technical control of the state of diagnostic equipment to the extraction of imaging markers in oncology and the
calculation of their correlation with clinical data.

Keywords: radiomics; radiology; quality assurance; quality control; tumors; cancer; standardization.
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INTRODUCTION

Advances in the field of radiation imaging significantly
expanded their role in the entire range of methods for tu-
mor processes management, from diagnosing primary foci
and detecting metastases to monitoring treatment response
and predicting individual patient outcomes. However, a sim-
ple visual analysis of tumor using radiation diagnostics is
no longer sufficient, since each type of tumor is known to
subdivide into many different molecular genetic subtypes.
Accordingly, each tumor requires its own therapeutic and
diagnostic approach. Here from the side of diagnostics, ra-
diomics can be of great help.

Radiomics represents a method not just for visual analy-
sis of medical images, but for large number extraction of
quantitative signs, which allow deeper analysis and compre-
hensive assessment, such as tumor phenotypes and other
pathological properties of affected tissues, as well as tumor
biological characteristic assessment and treatment response
prediction [1, 2]. For example, solid cancer is heterogeneous
in time and space, which limits the use of molecular analysis
based on invasive biopsy but offers great potential for medi-
cal imaging and enables non-invasive detection of intratu-
moral heterogeneity [3-5].

Quantitative analysis transition requires the development
of automated and reproducible analysis methodologies to
extract additional information from images [6]. Hence, a
question in initial data quality arises, since this can affect
the analysis outcome and provide incorrect diagnostic infor-
mation, which will affect the clinical significance of detected
indicators and patient health [7, 8].

Therefore, this literature review aimed to analyze possi-
ble approaches to ensure the quality of radiation diagnostics
studies at all stages, from technical control over the state
of diagnostic equipment to extracting imaging markers in
oncology and calculating their correlation with clinical data.
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Literature search was performed in the PubMed,
GoogleScholar, and eLibrary databases in English and
Russian languages. Requests such as “radiomics,” “can-
cer and tumors,” “standardization,” and “quality as-
surance or quality control” were used for PubMed and

GoogleScholar.

METHODOLOGY OF RADIOMICS
Image acquisition

The step 1 in radiomics consists obtaining images using
radiology methods, namely magnetic resonance imaging
(MRI), computed tomography (CT), and positron emission
tomography combined with computed tomography (PET/CT)
(Fig. 1). Radiology methods provide various and often com-
plementary information about physical and kinetic prop-
erties of tissues, metabolism, etc. For example, analysis
based on the size or volume of the pathological structure
can be obtained using anatomical MRI or CT. Perfusion can
be determined by a series of dynamic MRI or contrast-
enhanced CT scans. Diffusion-weighted MRI can be used
to assess tissue microcirculation and assess cellularity.
Metabolic changes such as glucose metabolic rate can be
measured using PET/CT and fluorodeoxyglucose. In addi-
tion, other additional biomarkers may be proposed in the
course of clinical trials [9, 10].

Historically, imaging devices were developed for subjec-
tive interpretation of images, for clinicians to determine the
presence of lesion and its location. Subsequent technical in-
novations are focused on image quality improvement, scan
times reduction, or processing machines integration. These
devices were not primarily intended to provide quantitative
measurement in a reproducible manner. Standardization
protocols for image acquisition are unavailable. In addition,
significant differences may be present in reconstruction

)
_ Data integration, Data output
Radiomic grouping, (robust imaging
signs and correlation biomarkers,
- prognostic factors)
calculation
\—

Fig. 1. Scheme of radiomics analysis of radiation diagnostic images indicating the role of quality control system.
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parameters. H. Kim et al. [11] studied the effect of recon-
struction filters on radiomic signs identified from CT im-
ages of patients with lung cancer and concluded that the
relationship was statistically significant and reconstruction
settings should not be used interchangeably. N. Ohri et al.
[12] assessed the variability of radiomic characteristics ob-
tained from PET/CT under different modes of data collection,
algorithms reconstruction, post-filtration, and number of it-
erations. A total of 40 out of 50 signs were demonstrated to
have significant (up to 30%) variability. Variability of signs
can vary more significantly when performing MRI due to the
amplitude of the scanner gradient magnetic field, used pulse
sequence, contrast agent administration method, trajectory
sampling in k-space, and other factors [13]. Data quality
depends on reliability of data collection protocols used in
clinical centers, thus the effect of these changes on the sta-
bility of radiomic signs needs to be carefully investigated and
analyzed in future studies.

New methods of image processing

Image processing is the next step in radiomic signs ex-
traction. Thus, identification of a region of interest (R0I) and
volume of interest (VOI) is a fundamental task in oncological
practice [14]. Manual description by experienced roentgen-
ologists or radiologists is considered the gold standard, but
is time-consuming with a high degree of inter- or even intra-
operator variability. Automated or semi-automated methods
are often used, such as determining threshold values, clas-
sifiers, clustering, Markov models of random fields, artificial
neural networks, deformable models, and some others to
determine ROI [15].

Automation can provide new opportunities for segmenta-
tion techniques standardization; however, problems associ-
ated with complex anatomy or areas of low soft tissue con-
trast are still present, therefore manual adjustments by an
experienced physician are often required. One of the meth-
ods of semi-automatic segmentation, which avoids errors,
is the use of digital biopsy, in which only certain segments
are sampled based on intensity and texture values [16]. For
segmentation or selection of images, advanced machine
learning methods also emerged and used [17].

Several major initiatives aimed to develop automatic
segmentation solutions using deep learning. These include,
Google DeepMind, Microsoft Project InnerEye, and Mirada
DLCExpert. These automated segmentation tools showed to
increase efficiency in structure reconstruction, especially for
organs at risk [18, 19]. In the near future, deep learning-
based segmentation tools may become reliable enough for
routine research.

Extraction of signs, grouping, and data integration

Extraction of multidimensional datasets (radiomics signs)
is the main stage of radiomics to quantify the VOI highlighted
in the image [20]. Signs extracted from images can be di-
vided into static and dynamic groups.
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Characteristics of static signs. Static signs multitude
comprises two categories, morphological and statistical [21].
Morphological signs are used to define three-dimensional
(3D) shape characteristics such as volume and surface area,
as well as sphericity (the extent a 3D volume resembles a
sphere). Statistical signs are used to mathematically evalu-
ate the distribution of grayscale within an ROl or VOI. There-
fore, the first-order signs include the mean value, standard
deviation, percentiles, kurtosis, and asymmetry, which are
used to characterize the overall variability in intensity. Sec-
ond-order signs characterize the texture of selected area by
analyzing the relationship between individual voxels within
the ROI or area, i.e., exhibit local distribution.

Aspects of dynamic signs. Pharmacokinetic modeling
is commonly used to quantify the dynamic distribution of
a contrast agent or other indicator within a region (which
may be one or more voxels). In general, pharmacokinetic
modeling considers the contrast agent concentration as a
function of arterial input and residual contrast agent decay
within the ROI. The intravascular and interstitial space can
be modeled under different assumptions. For example, the
most widely used kinetic model, the Toft model, assumes
instant mixing of contrast in the intravascular and interstitial
space, whereas the extended Toft model takes into account
the effect of delayed contrast agent concentration in tissue.
The model of homogeneity of adiabatic tissue is explained
by the fact that contrast agent concentration in distribution
volume outside the vessels changes more slowly compared
to the intravascular space concentration. Thus, the model
assumes a finite transit time for contrast agents from arte-
rial phase to venous phase.

In general, existing analytical pipeline typically includes
thousands of extracted radiomics characteristics, and this
number is expected to grow with new available data. How-
ever, clinically significant signs include not all selected ones,
but the most reliable signs, correlating with clinical data for
the possibility of disease course prediction.

Calculation of correlations, identification
of prognostic factors

As in many other fields where the -omics suffix is used,
the number of input variables often far exceeds the num-
ber of patients. In order to reduce the probability of false
positive results, specific sign selection or search area size
reduction is required, and filter-based scoring approaches
are commonly used, such as Wilcoxon analysis and principal
component analysis. This can be implemented using either
one-dimensional methods, when the evaluation criterion de-
pends only on the object relevance, or multivariate methods,
when a weighted sum is used to maximize relevance and
minimize redundancy [22-25]. Object selection can also be
combined with object classification into one model.

Once a set of characteristics is obtained, a data-driven
model can be created. These models include controlled and
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uncontrolled approaches [21, 26]. Unmanaged analysis does
not provide a result variable, but rather a summary of infor-
mation. Most often, a thermal map is used for its graphical
display, on which cluster structures in data matrix are si-
multaneously detected. In contrast, in the course of moni-
tored analysis, models are created, that attempt to divide
the treatment outcome data. Typical classification methods
include traditional logistic regression or more advanced ma-
chine learning methods.

Isolated radiomic signs that correlate closely with clini-
cal data and molecular analysis results can be classified
as imaging biomarkers, whereas classical biomarkers are
obtained by histological and molecular examination of tu-
mor tissues, i.e., using invasive method, imaging biomarkers
provide non-invasive characterization of the pathology. In
addition, reliable indicators of normal or pathological pro-
cesses in tissues or tumor responses are available for any
intervention.

QUALITY CONTROL
AND STANDARDIZATION
OF PARAMETERS IN RADIOMICS

Measurement accuracy improvement is necessary
(Fig. 2) to ensure radiomic signs quality and imaging bio-
markers reliability, which is determined by the magnitude
of bias or absolute error of obtained data and variability of
values (repeatability and reproducibility, defined as disper-
sion of measured values). These indicators are achieved

Vol 2 (2) 2021

Digital Diagnostics

by introducing quality control tests in radiation diagnostic
departments, namely acceptance tests, periodic, and inter-
nal control tests (tests for parameter constancy) [27]. Ac-
ceptance tests are performed during equipment installation
to establish the compliance of tested characteristics with
the manufacturer’s limit values. In case of confirmation of
parameter conformity, the medical organization person-
nel perform the first tests for parameter constancy, during
which base values are established for further quality control.
Internal control or parameter constancy testing is essential
in the quality control system as it predicts deterioration in
diagnostic image quality. In Russia, periodic tests include
monitoring of extended list of parameters, and are per-
formed by certified testing laboratories.

In international practice, inclusion of technical personnel
in the staff of MRI, CT, PET/CT offices is common. For ex-
ample, a large role is assigned to medical physicists, whose
important task consist research optimization and standard-
ization, as well as radiation diagnostics equipment quality
monitoring and safe system organization during research
[28]. In Russia presence of such personnel in the staff of
radiation diagnostics rooms are currently not required, and
competencies to implement quality control for radiomics are
unnecessary for medical personnel.

Measures to ensure quality control of radiological di-
agnostic equipment are required to achieve reliability and
clinically acceptable repeatability of measurements, which
is supported by the Radiological Society of North America
(RSNA), the European Society of Radiology, etc. Thus, col-
laboration between members of the Quantitative Imaging
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107 mm%/s
25¢
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PROBLEM Inability to perform differential 1) equipment parameters;
| i ADC X))
diagnostics 2) research protocols; 065940 434
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Fig. 2. Justification for quality control system implementation in radiomics.
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Network (QIN; USA) and National Institute of Standards and
Technology phantoms was developed for quality control in
clinical trials [29, 30].

Relationships are formed between revealed signs and
clinical data as a result of radiomic analysis to check the
model constructed and assess output information reliabil-
ity; it is validated for new patients [31, 32]. Literature data
are used, as well as dataset validation testing, or data from
other healthcare organizations to gain generalization pos-
sibility [31].

Standardization of study protocols

Following the standard methods of examination prepa-
ration, namely exclude foreign objects from the scan area
that contribute to distortion is necessary since MRI, CT, and
PET/CT images are susceptible to artifacts and noise; make
sure that the established rules for positioning the patient
are followed for better visualization. The patient should feel
comfortably motionless for a long time.

In addition, the voxel size and signal intensity have a
great influence on radiomic signs, therefore, ensuring the
standardization of protocols is important when setting up
the scan [32, 33]. The effect of reconstruction filters on im-
age quality and signal intensity should also be taken into
account, namely a filter should be chosen that does not lose
the useful signal and ensure high reproducibility of radiomic
signs when performing PET/CT and CT [34].

The image matrix is scaled and reduced to an isotropic
(square) form as part of image preprocessing [35]. Signal
intensity normalization to one scale is also recommended,
especially for MRI. For this purpose, statistical methods
are used, for example ANTsR and WhiteStripe [36]. Signal
intensity inhomogeneity phenomena may be encountered
when performing MRI, which are caused not by biological
properties of tissues, but by technical factors. In such cases,
correction for this heterogeneity is required, which should
be included in the quality control system of performed pro-
cedures.

Post-processing control

Tools and algorithms with proven accuracy of their work
should be used for post-processing process [36]. For exam-
ple, for the subsequent correct analysis of radiomic signs,
it is important to use high-quality tools at the segmentation
stage. Previously semi-automatic algorithms with manual
segmentation correction were used, but now more and more
algorithms based on artificial intelligence technologies [37]
appear, which must undergo appropriate tests [38].

Monitoring of isolated radiomic signs
and validation of imaging biomarkers

Principles of standardization and quality control of stud-
ies and procedures for pre- and post-processing of images
are required to ensure the quality (bias and variability) of

Vol 2 (2) 2021

DAl https://doi.org/10.17816/DD60393

Digital Diagnostics

radiomic signs, as well as reliability of imaging biomark-
ers [39].

At this stage, quality control tools are used, such as
phantoms, which enable the assessment of bias and repro-
ducibility of distinguished signs. Phantoms can be both digi-
tal and physical, made using substances of specified param-
eters [40, 41]. For example, for multicenter studies of breast
cancer, an appropriate phantom is used, which enables the
evaluation of study reproducibility and accuracy [42].

The phantom is scanned repeatedly under different
conditions, after which the variability of measurements is
calculated and compared with the threshold value that the
European Medicines Agency recommends, which is no more
than 15% to analyze the effect of the scanning parameters
on variability and methodology of study and post-processing
performance [39].

Accuracy is assessed in the process of studies on phan-
toms or on tissue samples and corresponds to the relative
error when the true value of signs (ground truth) and mea-
sured ones are compared. Setting the threshold value for
successful completion of assessment at the level of 15% is
recommended in the process of imaging biomarker valida-
tion [39].

This field of radiomics is under development, which
may become an effective method for diagnosing tumors
and predicting process analysis in the near future. We be-
lieve that the number of studies in this field will increase
with the introduction of artificial intelligence algorithms to
create relationships between the selected signs and clini-
cal data. However, without the implementation of the de-
scribed quality control approaches at all stages, obtaining a
solid evidence is impossible, i.e., data reproducible on other
populations, other equipment with a bias indicators within
the established limit. Phantoms were previously developed
for monitoring quantitative modes of MRI (with diffusion in-
dicators) and CT (with indicators of bone mineral density)
at the Center for Diagnostics and Telemedicine. From our
point of view, interaction with technical specialists (medical
physicists, engineers) and medical personnel is necessary
to develop phantoms with specified measurement accuracy
in planning a study of radiomic signs and further obtaining
imaging biomarkers in this work.

ROLE OF DEVELOPMENT
OF VISUALIZATION BIOMARKERS

In recent years, efforts were made to improve approach-
es to standardization of radiomic signs by defining standard
data collection protocols. Particular efforts for this were
made by the QIN created by the National Cancer Institute
(NCI), as well as RSNA, the Quantitative Imaging Biomarkers
Alliance (QIBA) and others. In 2010, NCI launched an initia-
tive of the Cancer Institute Centers for Quantitative Image
Excellence, and the creation of a National Clinical Trials Net-
work has become a key focus of this effort [43]. Centers for
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guantitative image improvement create PET/CT, CT, and MR
phantoms, as well as protocols for standardization, and QIBA
provides consensus decisions on the accuracy of quantita-
tive biomarker imaging measurements and requirements/
procedures necessary to achieve this level of accuracy [29,
35, 36, 44, 45].

Since the term “radiomics” appeared in the scientific lit-
erature, hundreds of published radiomics studies aimed to
improve the quality of diagnostics, treatment, and prognosis
of cancer. An increasing number of works demonstrate the
value of imaging biomarkers as an additional tool for clinical
decision-making and role of machine learning algorithms in
it [46].

One of the earliest applications of the radiomics-based
method is the successful detection of tumors in the imaging
of lung and breast cancers.

Breast cancer is a pathology that most often occurs in
women worldwide. Accurate diagnosis and early prediction of
treatment response are key aspects in clinical practice since it
is a well-known heterogeneous disease [47]. Several studies
used radiomics to predict breast cancer subtype or ER, PR,
Kié7, and HER2 status on mammography [48], PET/CT [49, 50],
and MRI [51, 52]. In addition to characterizing breast cancer,
radiomics may also provide a non-invasive approach to predict
metastases in the sentinel lymph nodes [53].

Most radiological research on breast cancer focuses on
therapy response evaluation. H.M. Chan et al. [54] devel-
oped an automated method using MRI to predict the absence
or insufficient response to treatment in patients with early
breast cancer. Most other studies attempted to obtain a
pathologic complete response (pCR) biomarker with neo-
adjuvant chemotherapy, a hot topic of discussion in studies
on breast cancer. Thus, N.M. Braman et al. [55] revealed
that intra- and peri-tumor characteristics found on dynamic
contrast-enhanced MRI can predict pCR prior to treatment.
Other studies also showed that TIWI, T2WI, and DWI can aid
in pCR detection [56, 57].

Radiological studies focused on the prognosis of breast
cancer are performed more and more frequently. For ex-
ample, H. Park et al. [58] developed an algorithm combining
MRI imaging biomarkers and clinical information to individu-
ally assess the survival ability of patients with breast cancer.

Lung cancer is the most dangerous type of cancer, and
its prevalence also continues to increase worldwide. Lung
cancer screening is one of the most important diagnostic
applications of radiomics. N. Nasrullah et al. [59] proposed
a deep learning model based on chest CT studies from the
LIDC-IDRI dataset and achieved good results in detecting
malignant lung nodules with a sensitivity of 94% and speci-
ficity of 91%. B.W. Carter et al. [60] conducted a screening
study of patients diagnosed with lung cancer in the National
Lung Screening Trial dataset using low-dose CT. They were
able to obtain predictive accuracy of 80% and 79% for nod-
ules that develop into malignant neoplasms in one or two
years, respectively.
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Radiomics enables the determination at the preoperative
stage in staging lung cancer by tumor nodules metastasis
(TNM) [61, 62], which is important for making a decision
about surgical intervention. In addition, the technique can
be used to detect specific genetic mutations in lung cancer,
such as the status for the Estimated glomerular filtration
rate gene [63] which can help medical specialists choose
the optimal therapeutic approach. X. Fave et al. used delta-
radiomic characteristics to predict outcomes in patients with
stage Il non-small cell lung cancer during radiation therapy
[64]. Their results suggest that changes in radiomic charac-
teristics due to radiation therapy will be indicative of tumor
response. T.P. Coroller et al. [65] established that radiomic
signs of CT before treatment can predict a pathological re-
sponse after neoadjuvant chemoradiation therapy in patients
with advanced non-small cell lung cancer.

In recent years, radiomics are increasingly used for diag-
nostics, treatment response prediction, and long-term out-
comes of tumors of the nervous system [26, 66, 67], head
and neck [68, 69], gastrointestinal tract [70, 71], prostate
cancer [72, 73], and some other forms of oncological dis-
eases [74].

CONCLUSION

Early detection and identification of tumors, their hetero-
geneity, and phenotypic signs can be invaluable in patient
stratification, subsequent treatment options determination,
and effects prediction. Radiomic analysis of diagnostic stud-
ies provides information necessary for this, but only under
conditions of high-quality collected and processed data. All
of these processes need to be standardized and optimized
using a variety of quality control methods, and at each stage,
from image acquisition to validation of imaging biomarkers.
In addition, clinical information must be taken into account,
based on which the search for clinical correlations is per-
formed to establish the prognostic value of biomarkers. Only
the qualitative fulfillment of all these criteria can make the
biomarker imaging tool really useful for doctors and neces-
sary for patients.
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Ponb MaMMorpadum B pagmoMuKe paka
MOJIOYHOM Xene3bl
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AHHOTALUA

MamMorpagua — B HacToALLEe BPeMA eAMHCTBEHHBINA CNOCO6 CKPMHMHIA paKa MoslouHoM xenesbl (PMHK). Xota umng-
poBas MamMMorpadua Cy*KWUT OCHOBHLIM M Haubosee LIMPOKOLOCTYMHLIM METOAOM AnA BhiABneHus PMHK, eé adpderTmB-
HOCTb B 0BHapy*KEHWUM U OLIEHKE BHYTPMOMYXONEBOM reTeporeHHOCTM OMyXoNu orpaHuyeHa. MyHKLUMoHHanA buoncus He Mo-
KeT 0TPa3UTb MMCTONOTMYECKOM KapTUHBI OMYXOiM B LENIOM M3-3a Hebonblioro pasMepa obpasua TKaHWU WUAW OMyXOnu.
Mo aTor NpuumHe BbIGOp MOOXOAALLENO FIEYEHWUA W ONpefeneHVe NPOrHo3a CTaHOBUTCA 3aTpYAHUTENbHBIM. B aToM ciyyae
TaKOWM HeMHBa3WBHbIM NOAX0M, KaK MedMLMHCKaA BU3yanu3auus, [aeT bonee nonHoe npeactaBneHune ob onyxonu, nep-
CMEKTUBEH NMPU «BUPTYaNbHOM BUONCKUM», @ TaKKe B KOHTPOJIe NPOrpeccupoBaHMA 3aboneBaHnsA 1 0TBETA Ha Tepanuio.

PaguoMuKa ¢ MoMOLLbI0 TEKCTYPHOrO aHanu3a Mo3BOSIAET B3MAHYTb HAa CHUMOK Kak Ha rpynny YMCOBbLIX XapaKTe-
PUCTUK, BbINTW 33 Npegesbl MPMBLIYHOMO Ka4eCTBEHHOMO 3PUTESIbHOTO BOCMPUATMA MHTEHCUMBHOCTEN M NepenTn K bonee
rny6oKoMy aHanu3y LMGPOBbIX, MUKCENbHLIX AAaHHBIX C Leblo NOBbILLEHWUA TOYHOCTU AndPepeHLManbHON AUarHOCTUKK.
MeToq pagMoreHoMMKK, ABNAACL ECTECTBEHHBIM NPOLOMKEHNEM PaSUOMUKM, GOKYCMPYETCA Ha onpegeneHnm SKCnpeccum
reHoB Mcxofd M3 NyyeBoro ¢peHoTMna onyxonu. B o63ope paccMaTpuBalTCA BO3MOMHOCTUA NMPUMEHEHWUA MaMMorpaduu
B PaaMoMuKe M paguoreHoMmke PMHK.

B craTbe npepcTaBneH 063op nutepatypbl 6a3 faHHeix PubMed, Medline, Springer, eLibrary, a Take HaaeHHbIX ¢ no-
MoLblo Google Scholar akTyanbHbIX POCCUICKMX HayyHbIX cTaTelt. [lonyyeHHan peneBaHTHaA MHPoOpMaLMA 06beauHeHa,
CTPYKTYpUpOBaHa 1 NpoaHanM3npoBaHa C Lienbio U3y4YeHnA ponv Mammorpadum B pagnommke PMAK.

KnioyeBble cnoBa: pak Mo/IOYHOM *Kene3sbl; MaMMorpadua; paguoMmKa; paanoreHOMIUKa; UCKYCCTBEHHBIA MHTENNEKT.
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The role of mammography in breast
cancer radiomics
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ABSTRACT

Mammaography is still the only screening method for breast cancer. Although digital mammography is the most common
and widely used method for detecting breast cancer, it is ineffective at detecting and assessing intratumoral heterogeneity.
Due to the small size of the tissue sample or tumor, biopsies often fail to represent the entire tumor. For this reason, selecting
a treatment and determining a patient’s prognosis becomes difficult. In this case, medical imaging is a noninvasive approach
that can provide a more comprehensive view of the entire tumor, act as a “virtual biopsy,” and be useful for monitoring disease
progression and response to therapy.

Radiomics with texture analysis allows you to look at an image as a group of numerical data, moving beyond the usual
visual perception and into a deeper analysis of digital, pixel data to improve the accuracy of differential diagnosis. Radioge-
nomics is a natural extension of radiomics that focuses on determining gene expression based on radiologic tumor phenotype.
The purpose of this review is to evaluate the role of mammography in breast cancer radiomics and radiogenomics.

The article presents a literature review of relevant Russian scientific articles found in databases such as PubMed, Medline,
Springer, eLibrary, and Google Scholar. The information obtained was then pooled, structured, and analyzed to examine the
role of mammography in breast cancer screening radiomics.

Keywords: breast cancer; mammography; radiomics; radiogenomics; artificial intelligence.
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BREAST CANCER: RELEVANCE
AND CHARACTERISTICS

Breast cancer (BC) is a pressing issue in modern oncol-
ogy since it ranks first in terms of prevalence among all
malignant neoplasms in women [1]. In Russia, the incidence
of BC was 89.8 cases per 100,000 female population in 2018
[1];in 2019, 73,366 breast cancer cases were detected, with
27.7% of patients in stages Ill and IV [2].

BC is a heterogeneous disease, which means that tumor
morphology and expression subtypes differ depending on the
receptor status of BC [3, 4]. Further, the expression of the
estrogen receptor (ER), progesterone receptor (PR), and hu-
man epidermal growth factor receptor 2 (HER2) determines
BC receptor status. The proliferation marker Ki-67 and the
epidermal growth factor receptor are also immunochemi-
cally stained to determine the molecular subtype of BC [4].

The following are the five molecular subtypes of BC:

1) Luminal A [ER+, PR+ high (=20%), HER2-, Ki-67 low
(=20%)]: estrogen-dependent low-aggressive tumors
with no overexpression of HER2 protein receptors; char-
acterized by high expression of the ER gene

2) Luminal B [ER+, PR+ low (<20%), HER2-, Ki-67 highl:
estrogen-dependent tumors with no overexpression of
HER? protein receptors

3) Luminal B [ER+, HER2+, any Ki-67 level, any PR]: estro-
gen-dependent aggressive tumors; expressed amplifica-
tion of the HER2 oncogene; apparent expression of the
ER gene

4) HER2 positive [ER- and PR-, any Ki-67, HER2+]: estro-
gen-independent aggressive tumors; expressed amplifi-
cation of the HER2 oncogene

5) Triple negative (basal-like): estrogen-independent ag-
gressive tumors with the worst survival rates (ER-, PR-,
HER2-) [3-5]

Tumor biology is known to influence the selection of
therapy as well as the outcome prognosis, with ER+ and
PR+ patients having a longer relapse-free survival ability,
while triple-negative BC (TNBC) (ER-, PR-, HER2-) has the
most aggressive course and the worst survival rates [3,
6]. The use of biological markers to identify BC subtypes
improves patient survival by allowing for more accurate
disease diagnosis. For example, patients with ER and PR
expression in their tumors should receive endocrine ther-
apy, while patients with HER2 expression should receive
anti-HER2 therapy [7].

Intratumoral heterogeneity is defined as the heterogene-
ity of the morphological structure and the variability in the
expression of various markers by individual groups of cells
within the same tumor [8, 9]. On the other hand, morphologi-
cal intratumoral heterogeneity can be defined as diversity in
different areas of the tumor, i.e., spatial heterogeneity, or
as tumor progression in time, i.e., heterogeneity in time [8].
Due to such heterogeneity of neoplasms and the small size
of the puncture tissue sample, the hiopsy cannot reflect the
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histological presentation of the tumor as a whole. There-
fore, choosing the appropriate treatment and determining
the prognosis becomes difficult. When the tumor is small,
biopsies can be difficult. In this case, a noninvasive approach
such as medical imaging provides a more consistent view
of the tumor and holds promise for “virtual biopsy,” as well
as monitoring disease progression and response to therapy
[7, 10-12].

EARLY DIAGNOSTICS OF BREAST
CANCER AND PREDICTION
OF THE OUTCOME OF THERAPY

Cancer detection at an early stage is an effective method
to reduce patient mortality [13]. Mammography is still the
only method for screening and diagnosing BC [10]. Although
digital mammography is the most commonly used method
for early detection of BC, its efficiency in detecting findings
is limited, and mammography has a lower sensitivity in pa-
tients with high mammary gland density (ACR-C and D) [14],
since the pathological lesion can be overlapped by fibroglan-
dular structures in the image [15, 16]. Despite the reduced
sensitivity in one of the groups of patients, digital mammog-
raphy currently has the best combination of sensitivity and
specificity in diagnostics of BC, but these two indicators vary
between 75%-90% and 80%-90%, respectively, depending
on the country [15]. In their recent study, 0. Demircioglu et
al. [17] showed that the interpretation of low-quality images
by radiologists with limited experience leads to overdiagno-
sis and unnecessary painful invasive procedures in roughly
half of clinical cases [6, 15, 17].

Recent advances in artificial intelligence (Al) technolo-
gies used for image analysis hold promise for detecting tu-
mors and reducing the burden on doctors, evaluating treat-
ment, and monitoring disease progression [6]. However, in
BC, the primary tasks of clinical practice and research are
early detection of the disease prognosis and prediction of
the response to therapy. From this point of view, other ap-
plications of Al are possible, such as using texture analysis
to determine the cancer subtypes and predict treatment re-
sponse [6, 18, 19].

The interpretation of images by a radiologist with an
assessment of the tumor structure, its relationship to the
surrounding tissues, special aspects of the location, and
structure of microcalcifications are all part of the mammo-
graphic study analysis. To create truly personalized therapy,
a quantitative (objective) assessment of the lesion is also
required [6].

Intratumoral heterogeneity is important for accurate di-
agnosis, clinical prognosis (response to treatment, survival
rate, disease progression, etc.), and treatment of oncologi-
cal diseases [20, 21]. Early detection of tumor resistance
to therapy is critical for improving outcomes, allowing for
timely treatment regimen changes [6].
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Thus, there is a need to improve the efficiency of detec-
tion, prediction of outcome, and response to treatment of
BC. A unique set of techniques, combined in radiomics and
radiogenomics, is gaining traction as a tool for maximizing
the information that can be extracted from virtually any mo-
dality of digital medical imaging [15].

RADIOMICS AND RADIOGENOMICS

Radiation diagnostic images contain information that in-
dicates pathophysiological processes, and this relationship
can be identified using quantitative image analysis [22]. To
put it another way, tumor characteristics at the cellular and
genetic levels are reflected in the phenotypic patterns of the
tumor, which can be manifested and detected in images [23].

Radiomics is a process that includes the stages of prepa-
ration and subsequent quantitative analysis of multidimen-
sional data obtained from digital medical images (the “omic”
suffix appears in the names of molecular biology fields that
deal with large amounts of data [24]). Radiomics is defined as
image analysis that uses specific algorithms to extract numer-
ical characteristics of images in order to create classification
models to improve medical decision-making support, as well
as to determine the disease prognosis [25, 26] and treatment
[27], which is especially significant for personalized therapy.
In radiomics, one area of interest in an image is used to obtain
a set (sometimes tens or hundreds) of numerical character-
istics, each of which can hold a certain information and theo-
retical aspect (often referred to as a “radiomic sign”), which
is not available in normal viewing of images [15]. Radiomics
transforms medical imaging data into a dataset of order sta-
tistics by using automatic texture sign extraction algorithms
for digital medical images [28]. In other words, radiomics with
the use of texture analysis allows you to think of an image as
a collection of numerical characteristics, go beyond the usual
visual perception, and analyze multidimensional data.

Visualization Segmentation

Image
acquisition

Image
segmentation

1 2
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Radiogenomics is a technology that connects a patient’s
genotype to an imaging phenotype. It should be noted that
the term “radiogenomics” can also refer to genetic variabil-
ity and its relationship with response to radiation therapy
[29, 30], but it is more often used to assess the relationship
between the image characteristics of a tumor or any other
disease and its gene expression patterns and gene muta-
tions [25, 26].

Radiogenomics is a method for determining gene expres-
sion in a tumor based on its radiation phenotype. This is im-
portant because tumors are heterogeneous, and radiomics
data are extracted from the region of interest (tumor) as a
whole rather than from a separate sample [22]. Radiogenom-
ics also allows for the assessment of treatment response
that is not solely based on the traditional measurement of
tumor size over time [25]. The combination of radiomics and
radiogenomics can detect gene abnormalities in images [6].
Radiomics and radiogenomics improve the accuracy of clinical
diagnosis and have prognostic value by identifying relation-
ships between various types of clinical data [22].

STAGES OF RADIOMICS

When considering radiomics as a process, several ma-
jor stages can be distinguished, namely, image acquisition,
highlighting the area of interest, extraction of radiomic signs
from the area of interest (texture analysis of images), analy-
sis of textural signs, and construction of various prediction
and classification models using the obtained radiomic data
with the option of including additional information (e.g.,
clinical, demographic, or genomic data; the presence of co-
morbid conditions) [22, 23, 31]. The stages of radiomics are
depicted in Fig. 1, and their more detailed characteristics are
discussed further below:

1. Determination of the clinical problem and acquisition
of digital medical images, excluding low-quality studies.

Radiomics

Modeling

Intensity

Texture |
analysis | Sign
of images X analysis

Fig. 1. The diagram illustrates the typical stages in radiomics. After obtaining medical images (1), they are manually or automatically
segmented (2). Using special software or programming language modules, radiomic signs of the first and higher orders are extracted
from segmented regions of interest (3). Next, the analysis and selection of the most significant textural signs obtained are carried out.
Finally, based on the analyzed radiomic data, various clinical and diagnostic models of classification or prediction are constructed (4)
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2. Segmentation of images to the main analyzed areas
of interest [32], such as a malignant neoplasm, to assess
intratumoral heterogeneity. Many tumors have indistinct
boundaries, which complicates the reproducibility of their
segmentation [33]. Although it is preferable to use semiau-
tomatic or fully automatic selection of the area of interest
using special software, in some cases, expert specification
and manual selection are required [23, 34]. The selection
process of the region of interest is not standardized, and the
region of interest may contain the entire tumor or some of
its parts [35, 36]. Manually determining the region of interest
is time-consuming and variable due to differences in image
interpretation by different radiologists [33], which ultimately
affects the accuracy of the radiomic models constructed;
however, modern deep learning technologies using big data
are capable of mitigating this effect [37].

3. Extraction of a variety of radiomic signs from a seg-
mented region of interest using mathematical operations
involving numerical values of intensities and relative posi-
tions of pixels or voxels in images. The extracted quantitative
signs are classified into two categories: morphological signs
(volume and shape) and histogram signs (description of the
intensity of gray tone levels) of the first, second, and higher
orders [26, 34].

Morphological signs reflect the shape of the region of
interest. For planar images, 2D signs of shape are relevant,
such as the perimeter-to-surface ratio and roundness as
a measure of the approximation of the shape of the region
of interest to the shape of a circle. For example, a stellate
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tumor will have a higher surface-to-volume ratio than a
round tumor [31].

First-order histogram signs [38] indicate the distribution
of gray-level intensities for pixels in the region of interest.
The most common signs (mean and median) in this cate-
gory indicate the width of the range of intensities; entropy
is a measure of irregularity in the distribution of intensities
(higher values indicate a more heterogeneous region) [39].
However, first-order statistics do not account for the spatial
arrangement of pixels.

Second-order histogram signs [38], also known as tex-
ture signs, indicate the spatial relationship between two ad-
jacent pixels with the same or different brightness values.
The most common technique for extracting texture signs is
based on a gray-level co-occurrence matrix, which is a ma-
trix whose rows and columns represent gray intensity-level
values; the matrix cells indicate the number of times the cor-
responding gray values are in a certain relationship (angle
and distance between the pixels analyzed). For example,
signs obtained by using such a matrix include second-order
entropy, which indicates heterogeneity; energy, which de-
scribes image homogeneity; and contrast range, which de-
termines the local change in intensities [10]. In radiomics,
texture analysis provides information on the measure of
intratumoral heterogeneity [22, 40].

Figure 2 shows a comparison of the histogram signs
of the first and second orders, as well as the formation of
the adjacency matrix of the gray tone level, where Fig. 2 (a)
presents two original images, Fig. 2 (b) histograms of the

Enmtm!mpyf ZZp; J)logy (p(i,5) (]’

[/ffmzuf’nlmpJ Zp o(k)log, (po—y(k) + ﬂ

al
2 3 0
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.. = l 0 0
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-. %l 0 0
Segmentaton il Mistograms - Neighbor Radiomic  Radiomic
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g of first-order (signs of ’
statistics)  second-order
statistics)
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2]

Fig. 2. Comparison of histogram signs of the first and second orders. The two different initial regions of interest of the segmented image
(a) comprise an equal number of pixels in light gray, dark gray, and black shades. Brightness histograms based on the number of pixels
of certain shades (histogram signs of the first order) are the same (b). These signs do not indicate the mutual arrangement of the pixels.
Adjacency matrices (second-order histogram signs) reflect the heterogeneity of images (c). In the future, mathematical algorithms derived
from the obtained histograms of intensities and adjacency matrices of the gray level will be used to calculate a variety of radiomic signs

for analysis and modeling
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first order, and Fig. 2 (c) grayscale adjacency matrices ob-
tained for the original images. The row and column headings
of these matrices contain the shade of gray numbers. Each
cell of the table contains the number of horizontal pairs of
pixels, in which pixels with the shade indicated in the header
of the row and column of this cell are located relative to
each other at an angle of 0° [41]. Subsequently, mathemati-
cal algorithms from the obtained histograms of intensities
and adjacency matrices of the gray level are used to cal-
culate a set of radiomics signs for analysis and modeling.

4. Analysis and modeling: the radiomic signs obtained,
depending on the question posed, can be analyzed in various
ways, ranging from statistical models to machine learning
methods.

Given the large amount of data extracted from the im-
ages, step 1 is selection or reduction of signs. Irreproducible
signs should be excluded, since they most probably lead to
false results of the models constructed [42, 43].

Step 2 is multivariate data analysis [31] and the con-
struction of models classified into three main groups:
predictive, explanatory, and descriptive [15]. Descriptive
models are used to obtain a broad representation of each
sign, summarizing its key characteristics. Thus, explana-
tory methods often used for biomedical data frequently fo-
cus on the ability of the model to establish a relationship
between a sign and an outcome, such as the relationship
between the texture characteristics of the gray-level co-
incidence matrix and the morphological type of BC within
the region of interest. Further, machine learning methods
are used to create predictive models, which analyze the
probability of certain outcomes based on the input data
obtained [15], such as a radiomic model for predicting the
lack of response to neoadjuvant BC chemotherapy. Before
using the models in clinical settings, the quality and re-
producibility of the results of operation obtained should be
assessed [31].

EXPERIENCE, POSSIBILITIES,

AND PROSPECTS FOR USING
MAMMOGRAPHY IN RADIOMICS AND
RADIOGENOMICS OF BREAST CANCER

Recognition of a malignant neoplasm

The most difficult and crucial step in mammography is
classifying mammogram findings as benign or malignant
[44]. In their recent study, N. Mao et al. [45] demonstrated
that using quantitative signs in conjunction with Al can pro-
vide greater diagnostic efficiency when using mammography
compared to the efficiency of diagnostics performed by ex-
perienced radiologists [15].

The process of classifying microcalcifications as benign
or malignant based on images is still a difficult task for ra-
diologists [46]. When suspicious calcifications are detected,
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texture analysis of images can be performed in conjunction
with Al methods, potentially reducing the number of unnec-
essary biopsies [47, 48].

Specific features of the mammary gland parenchyma
may reflect biological risk factors for BC. H. Li et al. [49]
showed that using textural signs extracted from mammo-
grams of the affected and contralateral (with normal paren-
chyma) glands improves the accuracy of digital mammog-
raphy in the diagnosis of BC. Studies reveal that radiomics
with high sensitivity and specificity can distinguish between
malignant and benign mammary gland neoplasms [50].

Definition of BC subtypes

Recent radiogenomics studies have confirmed the re-
lationship between MR signs of BC imaging and molecular
subtypes, namely, luminal A, luminal B, HER2, and TNBC
[51]. Although mammography images provide less informa-
tion than magnetic resonance imaging (MRI), several stud-
ies are currently underway to demonstrate the potential
of mammography in radiomics and radiogenomics of BC.
In their study, W. Ma et al. [10] demonstrated the possibil-
ity of predicting the molecular subtype of BC by extracting
radiomic characteristics from mammographic images. The
most significant signs were roundness, concavity, mean
gray value, and correlation. The results revealed that luminal
subtypes and TNBC have distinct textural signs, in contrast to
other subtypes, which allow them to be quantitatively distin-
guished using radiomics.

In some BC patients, the use of neoadjuvant che-
motherapy does not provide an effective therapeutic
response, resulting in delayed surgery, poor prognosis,
and increase in treatment costs. Moreover, the use of
radiomics in conjunction with independent clinical risk
factors (e.g., Ki-67 index, HER2 status) has been shown
to improve the predictive model of nonresponse to neo-
adjuvant chemotherapy [52].

Early detection of a more aggressive subtype of BC,
namely, TNBC, using medical imaging will allow clinicians
to prescribe treatment prior to definitive biopsy confir-
mation [53]. In a study by H.X. Zhang et al. [53], TNBC
had greater roundness and concavity compared to other
subtypes; the area under the ROC curve (receiver oper-
ating characteristic curve; classic ROC curve, a graph of
sensitivity versus specificity [54]) was used to assess the
accuracy of these two signs in differentiating TNBC from
other BC subtypes and was greater than 0.70 [53, 55]. In
this study, the skewness coefficient (a histogram attribute
reflecting the skewness of the distribution of values rela-
tive to the mean) of all subtypes was less than 0 (negative
or left-sided skewness). Further, the asymmetry coeffi-
cient of TNBC was found to be lower than the coefficients
of the other subtypes under study. Therefore, the above
radiomic signs can be considered as potential markers
of differences between TNBC and other subtypes of BC in
the future [53].
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Predicting the development of BC
and the possibility of personalized
screening

Radiomics-based technologies can help advance
personalized screening by developing tools for indi-
vidual risk assessment and including them in decision-
making support tools for mammographic screening, as
well as individual screening intervals [56-58]. A higher
density of mammary glands has been linked to an in-
creased risk of BC development [59]. The term “density”
refers to the degree of attenuation of X-ray radiation as
it passes through the gland and reflects the distribution
of fibroglandular tissue. However, the definition of den-
sity alone does not represent the entire complexity of
the gland structure. Image-derived textural signs have
been proposed as markers of changes in the paren-
chyma, indicating a link to the development of BC [57,
591. In their study, D. Kontos et al. [59] (2019) identified
radiomic phenotypes on mammograms that reflect the
complexity of the parenchyma (in addition to density)
and are independently associated with BC. In contrast
to the conventional definition of density, textural signs
indicated a subtler and more localized complexity of
the parenchymal pattern. The density of the mammary
glands differed between the phenotypes of low and me-
dium complexity of the parenchyma but was similar for
the other phenotypes. There are interesting data on the
phenotype with the least complexity (parenchyma com-
plexity) in women with high mammary gland density due
to their greater homogeneity, whereas the phenotype
with low and medium parenchyma complexity included
a small number of high-density images [59].

Preoperative detection of axillary lymph node
metastases

BC metastases are most commonly found in the axil-
lary lymph nodes. Axillary lymph node status is an im-
portant factor in determining overall and relapse-free
survival in BC patients [60]. An accurate preoperative
determination of the status of the axillary lymph nodes
can provide doctors with information that allows them
to decide whether or not to perform lymphadenectomy
and prescribe adjuvant therapy. Currently, the status is
determined by biopsy of the sentinel lymph node, which
can lead to complications, such as damage to blood ves-
sels and nerves, as well as the development of lymph-
edema; and diagnostics using imaging methods has a low
sensitivity [60]. J. Yang et al. [60] developed a model that
includes radiomic signs extracted from mammograms,
which can be used as a noninvasive method for deter-
mining metastases in the axillary lymph nodes prior to
surgery when combined with additional clinical and path-
ological information.
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LIMITATIONS ON THE APPLICATION
OF RADIOMICS

Although radiomics and radiogenomics hold great prom-
ise for the advancement of personalized medicine, they must
be validated on an independent dataset to confirm their di-
agnostic and predictive value. It will take time for these
technologies to gain significant practical value in cancer
research and even more time before they can be applied in
clinical practice. These limitations are due to the fact that
the available large amounts of data do not currently contain
the full characteristics of patients [6]. The complexity of the
reproducibility of radiomics results is associated with disad-
vantages at each stage, namely, different textural signs are
obtained on different equipment and visualization protocols
[61, 62]; the gold standard for manual tumor segmentation
is time-consuming and operator-dependent [63]; semiauto-
matic and automatic segmentations, which reduce variability
[64, 65], are not standardized; there is obvious repeatability
between texture signs, necessitating the reduction of the
size of the data [66, 67]; and there is no clear explanation
of the relationship between the unit of radiomics (the basic
unit of the texture) and human tissues. Furthermore, any
“meaningful” research results obtained should be reviewed
when the underlying theory is unclear and technical methods
are not standardized [68].

PROSPECTS FOR USING MAGNETIC
RESONANCE IMAGING IN BREAST
CANCER RADIOMICS

Convincing evidence have been accumulated that MRI of
the mammary glands is superior in diagnostic accuracy to
traditional diagnostic methods such as mammography [69].
Aside from detecting more cases of duct carcinoma in situ,
MRI of the mammary glands often changes the stage of the
oncological process, which helps to optimize the treatment
process.

It has been established that radiomic signs extracted
from MR images of mammary glands indicate tumor het-
erogeneity and vascularization [70], as well as enable to
differentiate duct carcinoma from a benign focus [71].
Existing radiomic models continue to lag behind expert
mammologists in terms of area under the curve for dif-
ferentiating benign from malignant lesions [72]. However,
promising results in identifying suspicious (BI-RADS 4 and
5) lesions using diffusion-weighted imaging radiomics
have been obtained [73].

Radiomics appears to be capable of assisting in clinical
decision-making while avoiding potentially invasive inter-
ventions in the armpit. Two different studies have shown
that the radiomic model can predict sentinel lymph node
metastases [74, 75], which is extremely important in clinical
practice.
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Another application of radiomics is associated with
the Ki-67 proliferation index, which is used as a prognos-
tic marker in BC [72]. Recent studies have investigated the
possibility of predicting the expression of the Ki-67 prolifera-
tion marker using radiomics of a series of dynamic contrast
enhancements [76-79].

CONCLUSION

One of the key concepts in radiomics is that ray diagnos-
tic images contain data that can provide more information
about the region of interest than previously believed. Mam-
mography is the most effective method for early detection of
BC. Mammographic images can be used for radiomic analy-
sis, which can be used to identify malignant neoplasms, BC
subtypes, disease progression, and response to treatment.

Radiomics-based technologies, such as in the field of
mammography, may be incorporated into medical decision-
making support tools in the future to determine strategies
for individual screening, follow-up, and possibly preventive
therapy. However, it should be noted that radiomics is still
in its early stages of development, with much more research
needed before clinical application.

Radiomics mammography provides important diag-
nostic and prognostic information about BC, which has the
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KaBepH03Hble Maﬂbd)OpMal.lMM roJjioBHoro Mo3sra
U COBpeéMEeHHble B3rnaabl Ha UX Jie4eHue

E.H. Tupa’, B.E. CunmupiH?, A.C. Tokapes' 3

! HayuHo-McCne10BaTeNbCKNN MHCTUTYT CKopoil noMolum umenmn H.B. CknndocoscKoro, Mocksa, Poccuiickan Oefepaums
2 MOCKOBCKMIA rocyapcTBeHHbIN YHMBepcuTeT MMeHn M.B. NloMoHocoBa, MockBa, Poccuiickan Depepauns
% [lenapTaMeHT 3apaBooxpaHeHmna ropoaa Mockebl, Mocksa, Poccuiickas Oenepaumsa

AHHOTAUMA

KaBepHo3Hble ManbhopMaLmu rofloBHOMO Mo3ra 6narofapa pasBUTMI0 COBPEMEHHBIX METO[OB HeWpoBM3yanu3aumm
ABNAIOTCA B NOCNeAHME rofAbl BCE Yalle 06Hapyu1BaeMoii natonorvei. HecMoTpa Ha 406pOKaYeCTBEHHBIN XapaKTep Teye-
HWA B HONBLUKMHCTBE CyYaes, faHHble 06pa3oBaHUA MOryT NPUBOAMUTL K PasBUTUIO CYLOPOXHOr0 CUHAPOMA U CEPbE3HBIM
HEBPOJIOrMYECKUM HapyLLeHWAM. KaKk npaBuno, MpUYMHaMM KIMHUYECKUX CUMITOMOB SBNIAKOTCA KPOBOM3NUAHMA B CTPYK-
TypY KaBEPHOM W OKPY}KaloLLYt0 MapeHXMMY FOJIOBHOMO Mo3ra. Bbibop TaKTUKM BeeHWA NaLMEHTOB C KaBePHO3HBIMU MaJlb-
dopMaumAMK roNOBHOrO MO3ra 3aBUCUT OT TUMa ManbGopMaLum, eé pa3mMepoB, JIOKaNM3aLmum, Halnuma NoBTOPHbIX KPo-
BOM3NIUAHUI U KIIMHUYECKON KapTUHBI.

[aHHbIi 0630p NUTEpaTypbl NOCBALLEH COBPEMEHHBIM METOZIAM NIEYEHUA KaBEPHO3HbIX ManbGOpMaLiMii rONOBHOM0 MO3-
ra, B YaCTHOCTM XMPYPr4eckMM noaxodaM. B cnyyasx rny6MHHOrO pacrnonoMeHusa 04aroB B GYHKLMOHANBHO 3HAYUMbIX
30Hax roI0BHOr0 M03ra, [/1A KOTOPbIX XapaKTepPeH MaKCUMabHbIA PUCK OCTIOMHEHWIA MPU XMPYPTrUYECKOM BMeLLaTeNb-
CTBe, anbTepHaTUBHBIMY BbICTYMAlOT METObI JIy4EBOM TEPANuK, TaKMUe KaK CTepeoTakcUYecKas pagmoxXMpypris, NPOTOHHanA
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NeYeHNA, UCNOMb30BaHWe NPOTOHHOM TePaNuUM B IEYEHUU KaBEPHO3HbIX ManbpopMaLuii. BbifaBneHbl npenmMyLLecTsa fyde-
BbIX METO/I0B JIeYEHWA KaBEPHO3HbIX MasbhopMaLmii.
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Cavernous malformations of the brain
and modern views on their treatment
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ABSTRACT

Cavernous malformations of the brain have become an increasingly common pathology in recent years, thanks to the
advancement of modern methods of neuroimaging. Despite the benign nature of the course in most cases, these formations
can cause convulsions and serious neurological disorders. Typically, clinical manifestations are caused by hemorrhages in
the structure of the cavernous and surrounding parenchyma of the brain. The management strategy chosen for patients with
cerebral cavernous malformations is determined by the type of malformation, its size, localization, the presence of repeated
hemorrhages, and the clinical picture.

This literature review focuses on modern methods of treating cerebral cavernous malformations. The main methods of
treatment for cavernous malformations of the brain, particularly surgical treatment, have been analyzed. If surgical interven-
tion is not possible, alternative methods of treatment include radiation therapy, such as stereotaxic radiosurgery, and proton
therapy, in cases of deep location of foci in functionally significant areas of the brain, which are characterized by the highest
risk of complications. The possibilities, efficacy, and safety of stereotactic radiosurgical treatment are discussed, as well as
the use of proton therapy in the treatment of cavernous malformations. Furthermore, radiation therapy has been shown to be
beneficial for cavernous malformations.

Keywords: cavernous malformations; radiation diagnostics; MRI; review; Gamma knife; proton therapy; radiosurgical
treatment; stereotaxic laser ablation.
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INTRODUCTION

Cavernous malformations (CM) are vascular lesions of
the brain and spinal cord with less blood supply and consist
of caverns with an endothelial lining [1-4]. CMs are detected
both in the supra- and infratentorial regions of the brain and
less often in the spinal cord [5-8].

These lesions are the second most common vascular
malformations of the central nervous system after develop-
mental venous anomalies [9-11].

The prevalence of CM in men and women is comparable.
Although CM can also be found in children, the diagnosis is
usually established at age 2040 years. In most cases, CM
may not manifest clinically; however, over time, it can cause
serious focal and cerebral neurological symptoms because
of CM rupture and hemorrhage into the structure of the le-
sions and the surrounding brain tissues [12].

Although several studies have reported that the levels
of risks of hemorrhages and seizures in this patient popula-
tion have been established to date, a clear identification of
modifiable risk factors is a significant challenge. Manage-
ment of patients with CM includes monitoring or performing
surgery [13, 14].

SURGICAL TREATMENT OF BRAIN CM

Microsurgical resection remains the “gold” standard of
CM treatment, which can permanently relieve the patient of
the concomitant manifestations of CM and the risks of de-
veloping neurological deficits associated with hemorrhages.
Assessment of the risk of surgical intervention depends on
the size and location of the lesion, proximity to the brain
surface, and experience of the surgeon [15]. Surgical treat-
ment is aimed at total removal of the CM and surrounding
potential epileptogenic zones [16]. However, if these lesions
are located close to vital structures (distance of <1 cm),
complete resection can lead to postoperative neurological
damage. In CMs localized in brain areas such as the thala-
mus, basal ganglia, or brainstem, surgery is usually per-
formed only with frequent recurrent hemorrhages or with a
significant deterioration in the patient’s condition.

Several authors note that the relatively low incidence
of complications of surgical treatment exceeds the risk of
hemorrhage in patients without previous diagnosis. Thus,
surgical removal of asymptomatic foci, especially in cases
of deep localization or localization in the brainstem, is un-
reasonable.

Foci that are deeply located in the basal ganglia or thala-
mus require a technically complex surgery, in which critical
structures of the brain, including the nuclei and tracts of the
white matter, can be affected; there is a risk of damage to
the perforating arteries. Postoperative complications of this
surgical intervention, even among experienced specialists,
occur in 5%—18% of cases, and lethal outcomes occur in
approximately 2% [17].
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Despite the progress and improvement of surgical tech-
niques, many patients still do not qualify for surgery or have
received incomplete treatment, so CM remains untreated. As
treatment for this patient population, stereotactic irradiation,
such as radiosurgery and stereotactic radiation therapy, is
gaining increasing significance.

POSSIBILITIES, EFFICIENCY,
AND SAFETY OF RADIOSURGICAL
TREATMENT OF BRAIN CM

Numerous studies have focused on the use of radiation
therapy for arteriovenous malformations and dural arterio-
venous fistulas [18-20]. Some studies have also demon-
strated the possibility of applying this method to treat CM.
Radiation therapy is mainly indicated for CM up to 3 cm in
diameter and located in deep brain areas, such as those with
the highest risk of complications. At present, stereotactic
radiosurgical treatment is one of the main radiation therapy
methods used to treat CM. Several uncontrolled studies have
reported that the risk of recurrent hemorrhage after radio-
surgery is reduced in patients after 2 years.

Lee et al. examined the efficacy and safety of radiosurgi-
cal treatment using the Gamma Knife in patients with brain
CM [21] by analyzing the results of treatment of 261 patients
with 331 symptomatic CM (average age, 39.9 years; average
CM volume, 3.1 ml). The average radiation dose throughout
the treatment period was 11.9 Gy. Patients were followed
up for 69 months. Several patients were diagnosed with CM
after an initial hemorrhage. In total, 136 hemorrhages were
diagnosed before treatment.

Researchers concluded that radiosurgical treatment re-
duced the risk of hemorrhage in patients with CM; therefore,
this method is considered an effective alternative treatment
for patients with difficult surgical access or with severe con-
comitant diseases.

Kefeli et al. attempted to evaluate the results of treat-
ment of brainstem CM using the Gamma Knife [22]. Their
study included 82 patients with 1-3 hemorrhagic events
confirmed by X-ray imaging before treatment. After the
treatment, the average target volume was 0.3 ml, and
the maximum radiation dose was 12 Gy. The average
follow-up durations were 25.5 months before surgery
and 50.3 months after surgery. The annual pretreat-
ment hemorrhage rate was 8.6%. In the post-treatment
follow-up, only three patients experienced recurrence of
hemorrhage; thus, the frequency of recurrent hemorrhage
within 1 year after treatment was 0.87%, i.e., the risk of
such complications was significantly reduced with this
therapeutic approach.

The magnitude of hemorrhage risk in CM has not been
clearly defined so far. During the natural course of CM, the
annual risk of hemorrhage ranges from 2.3% to 4.1%, while
in surgical treatment, the risk ranges from 2.7% to 6.8%
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[23, 24]. However, the risk of recurrent hemorrhage in CM
increases after the initial hemorrhage, reaching 40% [25].

Wen et al. performed a meta-analysis to assess the
clinical efficacy of radiosurgical treatment of CM using the
Gamma Knife and revealed no significant differences in the
frequency of hemorrhages between the first 2 years of the
postoperative period and the subsequent 2 years (RR 2.81;
95% confidence interval 0.20-13.42) [26].

Recent studies have established an annual decrease in
the frequency of hemorrhage from 39.5% to 7.2% during the
first 2 years after CM treatment using the Gamma Knife and
from 3.6% to 1% in subsequent years [22, 27, 28].

Kondziolka et al. studied the frequency of hemorrhages
by monitoring CM and revealed that the annual frequency
of hemorrhage was 5.9% before radiosurgery and 1.1% at
2 years after surgery [29]. Aboukais et al. demonstrated a
decrease in this indicator from 3.16% to 2.46% [30]. More-
over, Lopez-Serrano et al. reported annual hemorrhage
rates of 3.06% and 1.4% before and after radiosurgical
treatment [31].

Some authors believe that the efficiency of using the
Gamma Knife is apparent 2-3 years after radiosurgical
treatment, which is due to a decrease in the CM volume over
time caused by sclerosis and vascular thrombobliteration
after irradiation [31, 32]. However, whether the decrease in
the frequency of hemorrhages is associated with radiosurgi-
cal interventions or is a consequence of the natural course
of CM is under discussion [21].

The assumption was that the mechanisms of radiosur-
gical treatment of vascular malformations are based on
processes such as the proliferation of endothelial cells and
hyalinization, which causes the closure of the vessel lumen.
Gewirtz et al. and Nyary et al. performed histological exami-
nations of CM tissues in patients undergoing radiosurgical
treatment, which revealed signs of fibrinoid necrosis, de-
struction of endothelial cells, and pronounced fibrosis in the
connective tissue stroma [33, 34].

Park et al. analyzed long-term results of radiosur-
gical treatment of symptomatic brainstem CM using the
Gamma Knife in 45 patients (14 men, 31 women) [27].
The follow-up duration was more than 5 years, with an
average of 9.31 (range, 5.1-19.4) years. All patients had
a history of one or more episodes of symptomatic hemor-
rhage before radiosurgical treatment. These hemorrhag-
es were accompanied by manifestations of neurological
deficit, including cranial nerve dysfunction, hemiparesis,
hemisensory deficiency, spasticity, and chorea. The av-
erage target CM volume was 1.82 cm?, and the median
radiation dose limit was 13 Gy. Finally, the authors con-
cluded that radiosurgical treatment with Gamma Knife
is safe and clinically effective for treating CM, which re-
duced the recurrence rate of hemorrhage.

Until 2019, three major studies were conducted on
the use of the Gamma Knife (with >100 cases and at
least 4 years of follow-up) in the treatment of recurrent
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hemorrhagic or symptomatic CMs [35-37]. These stud-
ies enrolled a total of 530 patients. Kida showed that the
annual incidence of hemorrhages after using the Gamma
Knife decreased from 9.5% within 1 year to 4.7% within 2
years [37]. In other studies, the annual hemorrhage rate
after treatment decreased from 15% within 2 years to 2.4%
after 2 years [35].

Some researchers consider gender, severity of neuro-
logical manifestations before the intervention, CM size, de-
gree of edema of the surrounding tissues, and radiation dose
as factors that influence the frequency of hemorrhages in
patients undergoing radiosurgical treatment [36]. Moreover,
Kim et al. did not reveal significant differences in the fre-
quency of hemorrhages depending on the CM volume, radia-
tion dose, gender, and patient age at the time of treatment
with the use of Gamma Knife [38].

A common complication for most patients with CM is
epileptic seizures, and a correlation between the devel-
opment of hemorrhages and seizures is suggested. Pa-
tients with CM often experience concomitant headaches
or dizziness with hemorrhages [37]. Experimental stud-
ies have revealed that the deposition of blood clot me-
tabolites, especially iron, can be a similar epileptogenic
factor. Studies using magnetic resonance imaging (MRI)
have confirmed the relationship between the development
of seizures and hemorrhages in time in these patients.
Another risk factor for the occurrence of seizures is the
localization of the CM, primarily supratentorial, archicor-
tical, and mesiotemporal. In comparison with MRI data,
Menzler et al. demonstrated that 49 of 81 patients with
CM with involvement of the cerebral cortex had seizures,
while none of the 17 patients with exclusively subcortical
localization of CM had seizures [39].

Considering the complications of radiosurgical treatment
of CM, the risk of radiation-induced brain damage with the
emergence of neurological disorders, including headache,
dizziness, facial nerve palsy, facial paresthesia, diplopia,
dysarthria, and asthenia in the extremities, should be noted
[30]. Another serious side effect is radiation necrosis, which
can promote tumor development [40].

Some researchers express concern about the ability of
radiation exposure to induce the formation of new CMs, es-
pecially in children and individuals with familial illness [41].

The optimal radiation dose limit during radiosurgical
treatment of brainstem CM is not clearly defined; however,
Lee et al. and Kim et al. believed that the dose limit of 11 Gy
is sufficient to reduce the risk of radiation complications [21,
38]. The use of a level dose is effective, while a decrease in
the risk of hemorrhage to 2.4% was recorded 2 years after
Gamma Knife application, including improvement in neuro-
logical status, and the rate of radiation-induced complica-
tions was 2.32%.

In general, the therapeutic dose of radiation concerning
radiotoxicity in radiosurgical treatment of CM in the brain-
stem is 11-13 Gy [42].
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Fig. 1. Plan for proton radiosurgery of a periostemal cavernoma: contrast-enhanced magnetic resonance imaging before treatment and

after 3 months showing complete resorption of the cavernoma.

Following current recommendations for radiosurgery,
this approach should be considered in treating single CM
in patients with a history of hemorrhage in brain areas
where the surgical risk of tissue damage is unacceptably
high [43]. The expert opinion is that these methods are
not recommended in cases where the CM is available for
surgical treatment, in asymptomatic cases, and in familial
forms of the pathology.

Stereotactic laser ablation of these lesions is also con-
sidered a potentially promising method for treating CM with
epileptoid manifestations [44].

Thus, radiosurgical treatment of brain CM is a rela-
tively safe approach; as with its use, some complica-
tions, such as vascular ruptures and damage to the
brain tissue, are not registered. This method implies a
single provision of the entire radiation dose, which is
required to obtain the desired result and is sufficiently
safe for the surrounding brain matter. This approach is
characterized by the highest efficiency in the treatment
of CM. In some cases, the desired radiation doses can-
not be used safely because of the CM size (volume),
while a decrease in the dose leads to a decrease in the
exposure efficiency [45].

According to Lee et al., in the past, the efficiency of
radiosurgical treatment of CM was limited by insufficient
capabilities of neuroimaging methods, high doses of ra-
diation (>15 Gy), and incomplete or excessive coverage
of the target area [21]. Advances in neuroimaging (such
as MRI), optimization of radiation doses, and planning of

DAl: https://doi.org/10.17816/DD60532

interventions using appropriate software have reduced sig-
nificantly the risk of complications of radiosurgery.

PROTON THERAPY
IN THE TREATMENT OF CM

Proton therapy is an even more advanced method of
radiation therapy when surgical removal is impossible
or the patient refuses to undergo surgery. CM proton
therapy, similar to stereotactic radiosurgical treatment,
obliterates lesion structures and thereby reduces the risk
of subsequent hemorrhages. As an advantage, proton
therapy allows sufficient and accurate irradiation of the
tumor (accuracy of approximately 0.5 mm) with minimal
damage to healthy tissues and a decrease in the risk of
side effects [46].

The treatment effect is observed within 5-90 months
after application. Complete obliteration of the neoplasm
is achieved in 70% of cases. The plan of proton radio-
surgery of the cavernoma in the peristem is presented
in Fig. 1 [47].

CONCLUSION

CMs are vascular neoplasms of the brain, which
mechanism of development is based on vascular pro-
liferation, dysmorphism, and hemorrhagic angiopathy.
Clinical symptoms are caused by recurrent hemorrhages
in the structure of cavernous angiomas with subsequent
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deposition of iron in surrounding brain tissues, which can
result in the emergence of epileptogenesis foci, especially
when the cavernomas are localized in the mesiotemporal
and archicortical regions of the brain. Improvement of
diagnostics and treatment methods is a multidisciplinary
issue. The treatment method depends on the type, size,
and location of the malformation and history of hemor-
rhages. Since the risk of complications of surgical in-
tervention is high in some patients with CM and patients
with a familial form of CM, improvement of alternative
surgical treatment methods is extremely important. Ste-
reotactic radiation therapy is currently increasingly used
in the treatment of CMs.
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OnutenbHbii aHaMHe3 6poHxouene,
BbI3BaHHbIW TUNWUYHBIM KapLUHOUAOM

K.B. lpycakosa, I1.B. aBpurnos

CaHKT-TeTepbyprcKkuin Hay4HO-MUCCNe0BaTeNbCKUIA MHCTUTYT GTU3MoNynbMoHonoruu, CankT-Netepbypr, Poccuiickas ®epepauma

AHHOTALNA

B pabote npencTaBneH KAMHWUYECKWIA clyval C 4nUTeNbHbIM NepMoAoM HabmiogeHua ofuHouHoro 6poHxouene (6poH-
XOreHHOM PeTEHLMOHHOM KUCTbI). [Tpy NepBoHaYanbHOM KOMMIEKCHOM 06CNe10BaHUM, BRIIOYAKOLLEM TaKUEe UCCNeA0BaHUA,
KaK peHTreHorpadus, KoMMbloTepHan ToMorpagusa OpraHoB rpynHOM NonocTy, ¢rMbpobpoHXOCKONWSA, UMMYHONOrMYECKME
u bakTepmonoruyeckme obcnefoBaHMA Ha Ty6epKyNEs, faHHbIX 38 OHKONOTUYECKYI0 U MHPEKLMOHHYI0 NpUpoay U3MeHe-
HWIA He BbIABNEHO. /3MeHeHUA Bbinn pacLeHeHbl Kak NocneAcTBUA NePeHECEHHOr0 HecneuMdUYecKoro BOCnanmTebHoro
npouecca. Yepes 15 neT npu NnaHoBOM MeOULIMHCKOM OCMOTpE M0 AaHHbIM PEHTreHOrpagum opraHoB rpyaHON MOOCTH
0TMEYeHO yBeNMYeHWe pa3MepoB OpoHXoLIeNe, a TaKHKe NoABNEHNE OKpYrioro 06pa3oBaHWA B MeauanbHbIX 0TAenax 6poH-
xouene. C noMoLLbi0 AONONHUTENBHBIX METOL0B UCCNeA0BaHMA, TaKMX Kak KOMMbloTepHas ToMorpadma opraHoB rpyaHoi
MONOCTM C BHYTPUBEHHBIM KOHTPACTUPOBaHWEM, pUBPOBPOHXOCKONMA C BroNCUEN, YCTAHOBIIEHO, YTO BbIABIEHHOE 06pa30-
BaHWe ABNAETCA TUMUYHBIM KapLIMHOMAOM.

HecMoTpA Ha To uTo GpoHXouene B 6OMbLUMHCTBE ClyyaeB ABNAETCA [OOPOKAYECTBEHHBIM M3MEHEHUEM, U3 pasHO-
06pasuA NpMYMH, BbI3bIBAIOLLMX €r0 Pa3BUTUE, CledyeT BbiAenuTb 06CTpyKuMio bpoHxa HoBoobpa3oBaHmeM. Cpeau Ho-
B0O06pa30BaHUI NETKOT0 TUMWYHBIA KapuMHou coctaBnsAeT Bcero 1-2%, xapaKTepu3yeTcA KpaliHe MefieHHbIM pOCTOM
W OTCYTCTBMEM CNELUGUYHON KIMHUYECKOK CUMNTOMATMKW. HeCMOTpA Ha 3TO, TUMWYHBINA KapLUMHOME, OTHOCUTCA K 3/10Ka-
YECTBEHHLIM HeMpO3HOOKPUHHLIM 0bpa3oBaHuaM | Tuna. B 10-15% cnyyaeB BbIABNAKTCA MeTacTasbl, NPEUMYLLECTBEHHO
B MeAuacTUHasnbHble TIMMMATUYECKME Y3/ibl, @ TAKKE B NEYEHb, KOCTU, PEXE B MATKUE TKaHW.

[laHHoe KnnHWYecKoe HabniofeHWe roBOPUT O TOM, YTO AaXKe NMpU OTPULATENbHbIX pe3ynbTaTax nepBuyHOro obcnepo-
BaHWA JIOKaNbHO PacrosnoxeHHOro bpoHxoLene Takue U3MeHeHUA TPebyloT OHKOOrMYECKOM HAaCTOPOXKEHHOCTU U Mepuo-
[Vyecknx 06cnefoBaHUN B IMHaMUKe.

KniouyeBble cnoBa: KNMHUYECKUI Clyvald; GpoHXOLeNe; TUMUYHBIA KapLuMHOUA; KOMMbloTepHas ToMorpadus.
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Long-term broncocele anamnesis,
triggered by typical carcinoid

Kseniya V. Prusakova, Pavel V. Gavrilov

Saint-Petersburg State Research Institute of Phthisiopulmonology, Saint Petersburg, Russian Federation

ABSTRACT

The paper presents a case of a single bronchocele (bronchogenic retention cyst) caused by a typical carcinoid that was
observed for a long time. During the initial complex examination, including computed tomography with intravenous contrast,
fibrobronchoscopy, and immunological and bacteriological examinations of tuberculosis, there were no changes for the on-
cological and infectious nature. The changes were interpreted as the result of a postponed nonspecific inflammatory process.
Most of them were monitored using chest X-ray and the changes were stable. After 15 years, a control chest X-ray revealed
an increase in the size of the compaction in the lung and the appearance of a mass with calcification in the medial sections of
the compaction zone. Additional examination, including computed tomography with biopsy, determined that the obstruction of
the bronchus was caused by a neoplasm [according to histological examination (typical carcinoid)].

It should be noted that the initial detection of negative study results requires oncological alertness and periodic examina-
tions in dynamics.

Keywords: case report; bronchocele; typical carcinoid; computed tomography.

To cite this article
Prusakova KV, Gavrilov PV. Long-term broncocele anamnesis, triggered by typical carcinoid. Digital Diagnostics. 2021;2(2):223-230.
DOI: https://doi.org/10.17816/DD70922

Received: 23.05.2021 Accepted: 23.06.2021 Published: 01.07.2021
&
ECO®VECTOR The article can be use under the CC BY-NC-ND 4.0 license

© Authors, 2021



CASE REPORTS Vol 2 (2) 2021 Digital Diagnostics

DOI: https://doi.org/10.17816/DD70922

FEBIRYRES R SERMNRIERHE

Kseniya V. Prusakova, Pavel V. Gavrilov

Saint-Petersburg State Research Institute of Phthisiopulmonology, Saint Petersburg, Russian Federation

I F

AR T MR A SVE BN COUE R RE M) MR G £
i ad, WREES AR, Bl AR, YSRGS A4
TR SA A B SR T, A R I SRR (A R AR G PR PR A o I SRR L O e A% AR 57 1k AAE
RN R R 1655, EH ARSI, AR M S 2 AR, R RIS RN,
DAL SCVE B AN 20 IR R B o A AR AT 70 3k R 3 B (O g s 75 A 3 2 9 1 B 0L
W2 348, SRRSO ) e AR B 1 RS SR (S

REERZHIGO T, SEFEME M RIERL, HNGEEE RS MR BRE,
A B I R R X 7y SR BRI B 2E o AR AR AOR T, IR SR O 1-2% , HAFAIE
FE TS AR BCA R E IR RAEIR . B Int, MR e 128 — R AU v &
NI . FE10-16% BB, R BHA, LEAIEMEL T, CUAERE, &%
H, IR

X ImAREER I, R R e AL B S SRS M RS R 2 RN B, IR AR fk th
5 LR S AN B S Y i A A
KW WA, SOEEEM; USSR THELETR .
SIRAAIL:

Prusakova KV, Gavrilov PV. B 3L [ 288 5| 2 1A S B B A& A T3 52 . Digital Diagnostics. 2021;2(2):223-230.
DOI: https://doi.org/10.17816/DD70922

3] : 23.05.2021 B:5%: 23.06.2021 KA H:01.07.2021

ECOeVECTOR The article can be use under the CC BY-NC-ND 4.0 license
© Authors, 2021

225



226

CASE REPORTS

INTRODUCTION

Bronchocele (bronchogenic retention cyst, mucocele) is a
relatively common finding in chest X-ray studies. The mor-
phological substrate of bronchocele is local bronchiectasis in
which airways are filled with mucous contents persistently
secreted by the mucous membrane and with proximal ob-
struction of the airways [1]. In radiography and computed
tomography, bronchocele is visualized as a tubular branched
V- or Y-shaped structure associated with the bronchial tree
(finger in glove sign) [2]. The contents have homogeneous
structures, but dense inclusions (calcifications) are visual-
ized in 30% of the cases [2, 3]. The contrast agent is not
accumulated in computed tomography with intravenous con-
trast enhancement.

Bronchocele can have an oval or round shape, which
depends on the size of the obturated bronchus, amount of
contents in the lumen, and state of the surrounding pulmo-
nary parenchyma.

Solitary local retention cysts are asymptomatic. Reten-
tion cysts have various causes, such as congenital diseases
(bronchial atresia, lung sequestration, and cystic fibrosis),
infectious pathologies (nonspecific inflammatory processes,
tuberculosis, mycobacteriosis, and allergic bronchopulmo-
nary aspergillosis), obstruction of the bronchus by the lesion
(benign or malignant), foreign body, or cicatricial deformity
of the bronchus. Differential diagnostics is complicated be-
cause bronchocele can have similar radiological semiotics
regardless of causes [2].

Bronchocele should be differentiated with arteriovenous
malformations in the lungs, such as endobronchial metas-
tasis. In this case, computed tomography with intravenous
contrast enhancement is the preferred diagnostic method [2].

In most cases, bronchocele is caused by benign changes
in the lungs and does not require case follow-up; however,
in a locally located bronchocele, obstructive genesis by the
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lesion or foreign body should be ruled out. For this purpose,
supplementing radiation diagnostic methods with fibrobron-
choscopy with biopsy is recommended [4, 5].

Currently, an optimal diagnostic algorithm for identifying
the cause of bronchocele development has not been estab-
lished. Moreover, there are no uniform recommendations for
further follow-up of patients with newly diagnosed asymp-
tomatic retention cysts or bronchocele.

CASE DESCRIPTION

A 56-year-old male patient visited the Department of Ra-
diation Diagnostics for computed tomography of the chest
cavity organs.

The history assessment revealed that he was examined
for pneumonia 15 years ago. Despite the positive dynamics
based on clinical studies, during the course of antibiotic
therapy, radiological findings did not correspond to the
typical course of regression of infiltrative lungs changes
in pneumonia. X-ray imaging of the chest revealed an
area of induration of a tubular branched structure in the
middle section of the right lung (Fig. 1, a). Additional stud-
ies, including computed tomography of the chest with in-
travenous contrast enhancement, fibrobronchoscopy, and
immunological and bacteriological studies, did not detect
tuberculosis or an oncological process. Computed tomog-
raphy data were presented as selective scans on a film
carrier, which revealed a local, single branched structure
with smooth, clear contours, located along the subseg-
mental bronchi of the middle lobe of the right lung (finger
in glove sign), with homogeneous contents (Fig. 2), so the
patient was diagnosed with bronchogenic retention cyst
(bronchocele) on the middle lobe of the right lung. Sub-
sequently, follow-up studies were performed annually by
X-ray examination of the chest, and stable changes were
observed.

\

Fig. 1. X-ray image of the chest cavity organs of a b6-year-old patient a, At age 41 years, initial examination of the middle section of
the right lung revealed a segment of induration of the branched tubular structure (arrow); b, 15 years later, the size of the bronchocele
(arrow) increased, and a rounded lesion in the medial parts of the bronchocele (arrowhead) emerged.
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Fig. 2. Selective computed tomography scan of the thoracic cavity
organs of the same patient: a homogeneous V-shaped structure
in the middle lobe of the right lung with clear contours (arrow).

Prior to the present admission, the patient underwent a
medical examination at his workplace with harmful working
conditions. X-ray imaging of the chest revealed an increase
in the size of the previously determined bronchocele (Fig. 1,
b), as well as a new round lesion in the medial sections of
the bronchocele with calcifications along the lesion contour
(Fig. 1, b). To clarify the nature of the changes, the patient
underwent contrast-enhanced computed tomography of the
chest, which detected a single branched V-shaped structure
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with a clear contour in the middle lobe of the right lung,
and homogeneous contents located along the subsegmental
bronchi (finger in glove sign) were preserved. At the base
of the bronchocele, a rounded lesion with a smooth, clear
contour is noted, almost completely overlapping the bron-
chus B4 lumen, and single calcifications were found along
the periphery with signs of contrast accumulation in the ve-
nous phase from +29 HU to +112 HU (Fig. 3). Changes were
characteristic of bronchocele caused by neoplastic bron-
chus obstruction. Fibrobronchoscopy with biopsy was also
performed. Bronchoscopy revealed a rounded lesion of the
B4 ostium, which completely covered the bronchial lumen
(Fig. 4). The lesion is inactive and woundable on contact,
and the mucous membrane on the surface is hyperemic and
edematous. The biopsy results revealed that the histological
presentation of the lesion corresponded to a typical carci-
noid. The immunchistochemical study revealed that tumor
cells intensely expressed CD56, but not TTF1. The Ki67 pro-
liferative activity index was 2%.

The patient received surgical treatment by resection of
the middle lobe of the right lung. On 1-year follow-up ex-
amination, no signs of carcinoid recurrence were observed
by computed tomography of the chest.

DISCUSSION

The most common causes of multiple bronchocele
formation are cystic fibrosis, allergic bronchopulmonary

Fig. 3. Computed tomography scan of the chest cavity organs in the axial plane in the same patient: g, lung window; round lesion at the
base of the bronchocele was detected during the native phase; b, mediastinum window; single calcifications along the periphery of the
lesion were noted; ¢, mediastinum window; arterial phase; d, mediastinum window; signs of contrast accumulation by the lesion were

detected in the venous phase.
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Fig. 4. Fibrobronchoscopy in the same patient. The lesion of the B4 ostium on the right completely blocked the bronchus lumen.

aspergillosis, and tuberculosis. Solitary local retention cysts
are more often caused by the obstruction of the bronchus by
a neoplasm (benign or malignant) [2, 6].

A typical carcinoid accounts for 1%-2% of lung neo-
plasms [7]. In 70% of the cases, the tumor is localized in the
main bronchi, more often in the right lung, primarily in the
middle lobe [8]. Typical carcinoid is commonly observed in
people aged 40-50 years. With this form of lung neoplasm,
studies have not established a reliable relationship between
carcinogens and smoking [9, 10].

In most cases, bronchial carcinoid is asymptomatic
and is detected as an accidental finding during a routine
examination; however, in 2%-5% of the cases, bronchial
carcinoids can produce neuroamines and peptide hor-
mones, such as serotonin, adrenocorticotropic hormone,
somatostatin, and bradykinin [11]. Clinical manifesta-
tions of carcinoid syndrome include periodic hot flashes
or a sensation of blood rushing to the head, neck, and
arms, bronchospasm, diarrhea, and mental disorders
[11-13].

On X-ray imaging, a typical carcinoid is seen as a round
or oval lesion with clear and even (sometimes lobular) con-
tours. In up to 30% of the cases, eccentrically located or
diffuse calcifications are observed [2, 3].

On computed tomography, a typical carcinoid is revealed
as a rounded lesion with clear, even, or lobed contours. With
intravenous contrast enhancement, there is an accumulation
of a contrast agent, and in some cases, it is possible to trace
the feeding artery entering the lesion from the bronchial
arteries [6]. In relation to the bronchus, the carcinoid was
located intrabronchially, extrabronchially, or mixed iceberg
type, causing partial or total obstruction of the bronchial lu-
men [2, 3].

In the present case, although the cause of the broncho-
cele development was not established in the initial compre-
hensive examination, retrospective assessment of computed
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tomography data presented on a film carrier revealed the
presence of a lesion at the base of the bronchocele (Fig. 2).
With its extrabronchial location, changes during fibrobron-
choscopy may not be detected.

The densitometric parameters of the lesion located at
the base of the retention cyst may not be substantially dif-
ferent from the mucus, and small ones can be difficult to
visualize. Central carcinoid may be suspected when signs
of obstruction (atelectasis, “air traps,” or bronchocele) are
detected.

Differentiation of a typical carcinoid should be performed
with type Il neuroendocrine lesions of the lungs (atypical
carcinoid), bronchogenic cyst, and bronchocele.

The typical carcinoid is extremely slow growing. Accord-
ing to Raz et al. [14], the average doubling time of typical
carcinoid tumors is 7 years; therefore, it is difficult to judge
the dynamics based on the annual prophylactic radiography
of the lungs, since it is difficult to detect visually a minor
increase in tumor size. Thus, in the presence of a localized
bronchocele of an unknown nature, despite the apparent
lack of dynamics according to X-ray data, control studies by
contrast-enhanced computed tomography of the chest cavity
organs should be conducted at regular intervals to assess
reliably the dynamics of changes and exclude bronchial ob-
struction by a neoplasm.

Computed tomography is a preferred diagnostic method;
however, given the peculiarities of the location of typical car-
cinoids, many authors have recommended fibrobronchos-
copy with transbronchial biopsy as complementary imaging
methods [4, 5, 15].

Surgical resection is the gold standard for the treatment
of typical carcinoids, as this pathology has a low sensitivity
to chemotherapy and radiation therapy. In the case of com-
plete endobronchial location of the carcinoid in the central
regions, resection can be performed using the transhronchial
approach [6, 8, 13].
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CONCLUSION

Bronchocele is a benign finding in most cases, but in
localized bronchocele, the oncological nature of bronchial
obstruction should be ruled out. For this purpose, comput-
ed tomography of the chest cavity organs with intravenous
contrast enhancement and fibrobronchoscopy with biopsy
are recommended.

Some types of neoplasms, such as a typical car-
cinoid, are characterized by extremely slow growth.
Even with negative results on the initial examination
of a local bronchocele, these changes require on-
cological alertness and periodic examinations over
time.
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