Метадеректерді қарау

Limitations of using artificial intelligence services to analyze chest x-ray imaging

Dublin Core PKP метадеректер Осы құжаттың метадеректері
1. Атауы Құжат атауы Limitations of using artificial intelligence services to analyze chest x-ray imaging
2. Жасаушы Автор, мекеме, ел Yuriy Vasilev; Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies; Ресей
2. Жасаушы Автор, мекеме, ел Anton Vladzymyrskyy; Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies; Ресей
2. Жасаушы Автор, мекеме, ел Kirill Arzamasov; Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies; Ресей
2. Жасаушы Автор, мекеме, ел Igor Shulkin; Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies; Ресей
2. Жасаушы Автор, мекеме, ел Elena Astapenko; Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies; Ресей
2. Жасаушы Автор, мекеме, ел Lev Pestrenin; Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies; Ресей
3. Тақырыбы Дисциплиналар
3. Тақырыбы Негізгі сөздер artificial intelligence; chest X-ray; reproducibility of results; reliability
4. Сипаттама Аннотация

BACKGROUND: Chest X-ray examination is one of the first radiology areas that started applying artificial intelligence, and it is still used to the present. However, when interpreting X-ray scans using artificial intelligence, radiologists still experience several routine restrictions that should be considered in issuing a medical report and require the attention of artificial intelligence developers to further improve the algorithms and increase their efficiency.

AIM: To identify restrictions of artificial intelligence services for analyzing chest X-ray images and assesses the clinical significance of these restrictions.

MATERIALS AND METHODS: A retrospective analysis was performed for 155 cases of discrepancies between the conclusions of artificial intelligence services and medical reports when analyzing chest X-ray images. All cases included in the study were obtained from the Unified Radiological Information Service of the Unified Medical Information and Analytical System of Moscow.

RESULTS: Of the 155 analyzed difference cases, 48 (31.0%) were false-positive and 78 (50.3%) were false-negative cases. The remaining 29 (18.7%) cases were removed from further studies because they were true positive (27) or true negative (2) in the expert review. Most (93.8%) of the 48 false-positive cases were due to the artificial intelligence service mistaking normal chest anatomy (97.8% of cases) or catheter shadow (2.2% of cases) for pneumothorax signs. Overlooked clinically significant pathologies accounted for 22.0% of false-negative scans. Nearly half of these cases (44.4%) were overlooked lung nodules. Lung calcifications (60.9%) were the most common clinically insignificant pathology.

CONCLUSIONS: Artificial intelligence services demonstrate a tendency toward over diagnosis. All false-positive cases were associated with erroneous detection of clinically significant pathology: pneumothorax, lung nodules, and pulmonary consolidation. Among false-negative cases, the rate of overlooked clinically significant pathology was low, which accounted for less than one-fourth.

5. Баспашы Ұйымдастырушы, қала Eco-Vector
6. Контрибьютор Демеуші
7. Күні (КК-АА-ЖЖЖЖ) 04.12.2024
8. Түрі Зерттеу түрі немесе жанры Реценезияланған мақала
8. Түрі Түрі Ғылыми мақала
9. Формат Файл форматы PDF (Rus), PDF (Rus),
10. Идентификатор Әмбебап идентификатор, URI https://jdigitaldiagnostics.com/DD/article/view/626310
10. Идентификатор Digital Object Identifier (DOI) 10.17816/DD626310
10. Идентификатор Digital Object Identifier (DOI) (PDF (Rus)) 10.17816/DD626310-158236
11. Көзі Журнал/конференция, том., №. (жыл) Digital Diagnostics; Том 5, № 3 (2024)
12. Тілі Russian=ru, English=en ru
13. Байланыс Қосымша файлдар Fig. 1. Frequency of recognition by artificial intelligence services of anatomical structures (green) and foreign objects (blue) as the edge of a lung compressed by air (pneumothorax). (121KB) doi: 10.17816/DD626310-4225632
Fig. 2. Structure of omissions of clinically significant pathology. OOP — esophageal opening of the diaphragm. (102KB) doi: 10.17816/DD626310-4225633
Fig. 3. Structure of omissions of clinically insignificant pathology. CVC — central venous catheter. (192KB) doi: 10.17816/DD626310-4225634
Fig. 4. Post-inflammatory changes, fibrosis, pleuro-parenchymatous cords, adhesions. (209KB) doi: 10.17816/DD626310-4225635
Fig. 5. False positive case of AI-based software triggering associated with pronounced subcutaneous fat. (80KB) doi: 10.17816/DD626310-4225636
Fig. 6. Shadow of the mammary gland nipple, mistakenly labeled as a pulmonary nodule. (101KB) doi: 10.17816/DD626310-4225662
Fig. 7. Hiatal hernia undetected by AI-based software behind the heart shadow. (213KB) doi: 10.17816/DD626310-4225667
Fig. 8. On the lateral projection, a lesion in the projection of the upper lobe is visually determined (all software based on artificial intelligence technologies naturally did not determine it due to the processing of only the direct projection). (462KB) doi: 10.17816/DD626310-4225670
Fig. 9. The lateral projection shows fibrous changes in the posterior costophrenic sinus on the right, which are not visible on the direct projection (the artificial intelligence service did not detect them due to processing only the direct projection). Similarly to these changes, the service can "miss" minimal pleural effusion. (119KB) doi: 10.17816/DD626310-4225673
Fig. 10. Hydrothorax in a bedridden patient was not recognized by the AI-based software. (110KB) doi: 10.17816/DD626310-4225675
14. Қамту Кеңістік-уақыттық қамту, зерттеу әдістемесі
15. Құқықтар Құқықтар мен рұқсаттар © Eco-Vector, 2024
Creative Commons License
Бұл мақала лицензия бойынша қол жетімді Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.