An algorithm for measuring texture characteristics by combining Fourier spectra of images obtained in raking light
- Authors: Berezin A.V.1, Ivanova E.Y.2, Murashov D.M.3
-
Affiliations:
- State Historical Museum
- The Ilya Glazunov Russian Academy of Painting, Sculpture and Architecture
- Federal Research Center "Computer Science and Control", Russian Academy of Sciences
- Issue: No 4 (2025)
- Pages: 149-159
- Section: РАСПОЗНАВАНИЕ ОБРАЗОВ И ОБРАБОТКА ИЗОБРАЖЕНИЙ
- URL: https://jdigitaldiagnostics.com/0002-3388/article/view/689805
- DOI: https://doi.org/10.31857/S0002338825040108
- EDN: https://elibrary.ru/BPMVID
- ID: 689805
Cite item
Abstract
The article proposes a new algorithm for measuring the texture characteristics of objects in images. The novelty of the algorithm lies in using pairs of images obtained in raking light and combining their Fourier spectra. The application of the developed algorithm is demonstrated in solving the problem of counting the threads of woven bases of paintings from images. A computational experiment showed that the error in measuring the canvas density does not exceed 0.4 threads per centimeter. The accuracy of measuring the canvas density using different methods was compared. The proposed algorithm measures the characteristics of painting canvases with a texture distorted by pollution, ground penetration, or treatment with restoration materials, and is superior in accuracy to previously used algorithms. Using a new algorithm, the density of the canvases of seven paintings from the collection of the State Historical Museum was measured.
Full Text

About the authors
A. V. Berezin
State Historical Museum
Author for correspondence.
Email: berezin_aleks@mail.ru
Russian Federation, Moscow
E. Yu. Ivanova
The Ilya Glazunov Russian Academy of Painting, Sculpture and Architecture
Email: ivanova-e-yu@yandex.ru
Russian Federation, Moscow
D. M. Murashov
Federal Research Center "Computer Science and Control", Russian Academy of Sciences
Email: d_murashov@mail.ru
Russian Federation, Moscow
References
- Mishra D., Palkar B. Image Fusion Techniques: A Review // International J. Computer Applications. 2015. V. 130. № 9. P. 7–13. https://doi.org/10.5120/ijca2015907084
- Ramarao G., Bindu C.H., Murthi T.S.N., Kumar D.R.S., Kumar S.S. A Critical Review of Image Fusion Methods // MSEA. 2021. V. 70. № 2. P. 320–335.
- Klein A.G., Johnson D.H., Sethares W.A., Lee H., Johnson C.R., Hendriks E. Algorithms for Old Master Painting Canvas Thread Counting from X-rays // 42nd Asilomar Conf. on Signals, Systems and Computers. Pacific Grove, 2008. P. 1229–1233.
- Johnson D.H., Johnson C.R., Klein A.G., Sethares W.A., Lee H., Hendriks E. A Thread Counting Algorithm for Art Forensics // 13th IEEE Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop. IEEE, 2009. P. 679–684.
- Мазина А.Я. Исследование холстов русских художников XIX-XX веков // XII Научн. конф. “Экспертиза и атрибуция произведений изобразительного и декоративно-прикладного искусства“. М.: Магнум Арс, 2009. С. 131–135.
- Johnson D.H., Johnson C.R.Jr., Erdmann R.G. Weave Analysis of Paintings on Canvas from Radiographs // Signal Processing. 2013. V. 93. № 3. P. 527–540.
- Van der Maaten L., Erdmann R.G. Automatic Thread-level Canvas Analysis: A Machine-learning Approach to Analyzing the Canvas of Paintings // IEEE Signal Processing Magazine. 2015. V. 32. № 4. P. 38–45.
- Pan R., Gao W., Li Z., Gou J., Zhang J., Zhu D. Measuring Thread Densities of Woven Fabric Using the Fourier Transform // Fibres & Textiles in Eastern Europe. 2015. V. 23. P. 35–40.
- Aldemir E., Ozdemir H., Sari Z. An Improved Gray Line Profile Method to Inspect the Warp–weft Density of Fabrics // J. Textile Institute. 2019. V. 110. № 1. P. 105–116.
- Murashov D.M., Berezin A.V., Ivanova E.Yu.. Measuring Parameters of Canvas Texture from Images of Paintings Obtained in Raking Light // J. Physics: Conference Series by IOP Publishing. 2019. V. 1368. 032024. P. 1–11. https://doi.org/10.1088/1742-6596/1368/3/032024
- Иванова, Е.Ю., Березин А.В., Мурашов Д.М. Особенности процесса создания произведений Ф.С. Рокотова, выявленные с помощью современных методов технико-технологических исследований (на примере произведений из собрания ГИМ) // Ф.С. Рокотов. Собрание Исторического музея. Исследования и реставрация. М.: ГИМ, 2020. C. 134–148.
- Murashov D.M., Berezin A.V., Ivanova E.Y. Algorithms Based on Maximization of the Mutual Information for Measuring Parameters of Canvas Texture from Images // ICPR 2020 Workshops / Ed. A. Del Bimbo. Lecture Notes in Computer Science. Springer Nature Switzerland AG, 2021. V. 12665. P. 77–89. https://doi.org/10.1007/978-3-030-68821-9_7
- Руднева Л.Ю. Коллекция портретов Ф.С. Рокотова в собрании Государственного исторического музея. Каталог произведений // Ф.С. Рокотов. Собрание Исторического музея. Исследования и реставрация. М.: ГИМ, 2020. C. 4–77.
- Yang H., Lu J., Brown W.P., Daubechies I., Ying L. Quantitative Canvas Weave Analysis Using 2-D Synchrosqueezed Transforms: Application of Time-frequency Analysis to Art Investigation // IEEE Signal Processing Magazine. 2015. V. 32. № 4. P. 55–63.
- Soille P. Morphological Image Analysis: Principles and Applications. Berlin: Springer Science & Business Media, 2013. 392 p.
Supplementary files
