An algorithm for measuring texture characteristics by combining Fourier spectra of images obtained in raking light

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article proposes a new algorithm for measuring the texture characteristics of objects in images. The novelty of the algorithm lies in using pairs of images obtained in raking light and combining their Fourier spectra. The application of the developed algorithm is demonstrated in solving the problem of counting the threads of woven bases of paintings from images. A computational experiment showed that the error in measuring the canvas density does not exceed 0.4 threads per centimeter. The accuracy of measuring the canvas density using different methods was compared. The proposed algorithm measures the characteristics of painting canvases with a texture distorted by pollution, ground penetration, or treatment with restoration materials, and is superior in accuracy to previously used algorithms. Using a new algorithm, the density of the canvases of seven paintings from the collection of the State Historical Museum was measured.

Full Text

Restricted Access

About the authors

A. V. Berezin

State Historical Museum

Author for correspondence.
Email: berezin_aleks@mail.ru
Russian Federation, Moscow

E. Yu. Ivanova

The Ilya Glazunov Russian Academy of Painting, Sculpture and Architecture

Email: ivanova-e-yu@yandex.ru
Russian Federation, Moscow

D. M. Murashov

Federal Research Center "Computer Science and Control", Russian Academy of Sciences

Email: d_murashov@mail.ru
Russian Federation, Moscow

References

  1. Mishra D., Palkar B. Image Fusion Techniques: A Review // International J. Computer Applications. 2015. V. 130. № 9. P. 7–13. https://doi.org/10.5120/ijca2015907084
  2. Ramarao G., Bindu C.H., Murthi T.S.N., Kumar D.R.S., Kumar S.S. A Critical Review of Image Fusion Methods // MSEA. 2021. V. 70. № 2. P. 320–335.
  3. Klein A.G., Johnson D.H., Sethares W.A., Lee H., Johnson C.R., Hendriks E. Algorithms for Old Master Painting Canvas Thread Counting from X-rays // 42nd Asilomar Conf. on Signals, Systems and Computers. Pacific Grove, 2008. P. 1229–1233.
  4. Johnson D.H., Johnson C.R., Klein A.G., Sethares W.A., Lee H., Hendriks E. A Thread Counting Algorithm for Art Forensics // 13th IEEE Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop. IEEE, 2009. P. 679–684.
  5. Мазина А.Я. Исследование холстов русских художников XIX-XX веков // XII Научн. конф. “Экспертиза и атрибуция произведений изобразительного и декоративно-прикладного искусства“. М.: Магнум Арс, 2009. С. 131–135.
  6. Johnson D.H., Johnson C.R.Jr., Erdmann R.G. Weave Analysis of Paintings on Canvas from Radiographs // Signal Processing. 2013. V. 93. № 3. P. 527–540.
  7. Van der Maaten L., Erdmann R.G. Automatic Thread-level Canvas Analysis: A Machine-learning Approach to Analyzing the Canvas of Paintings // IEEE Signal Processing Magazine. 2015. V. 32. № 4. P. 38–45.
  8. Pan R., Gao W., Li Z., Gou J., Zhang J., Zhu D. Measuring Thread Densities of Woven Fabric Using the Fourier Transform // Fibres & Textiles in Eastern Europe. 2015. V. 23. P. 35–40.
  9. Aldemir E., Ozdemir H., Sari Z. An Improved Gray Line Profile Method to Inspect the Warp–weft Density of Fabrics // J. Textile Institute. 2019. V. 110. № 1. P. 105–116.
  10. Murashov D.M., Berezin A.V., Ivanova E.Yu.. Measuring Parameters of Canvas Texture from Images of Paintings Obtained in Raking Light // J. Physics: Conference Series by IOP Publishing. 2019. V. 1368. 032024. P. 1–11. https://doi.org/10.1088/1742-6596/1368/3/032024
  11. Иванова, Е.Ю., Березин А.В., Мурашов Д.М. Особенности процесса создания произведений Ф.С. Рокотова, выявленные с помощью современных методов технико-технологических исследований (на примере произведений из собрания ГИМ) // Ф.С. Рокотов. Собрание Исторического музея. Исследования и реставрация. М.: ГИМ, 2020. C. 134–148.
  12. Murashov D.M., Berezin A.V., Ivanova E.Y. Algorithms Based on Maximization of the Mutual Information for Measuring Parameters of Canvas Texture from Images // ICPR 2020 Workshops / Ed. A. Del Bimbo. Lecture Notes in Computer Science. Springer Nature Switzerland AG, 2021. V. 12665. P. 77–89. https://doi.org/10.1007/978-3-030-68821-9_7
  13. Руднева Л.Ю. Коллекция портретов Ф.С. Рокотова в собрании Государственного исторического музея. Каталог произведений // Ф.С. Рокотов. Собрание Исторического музея. Исследования и реставрация. М.: ГИМ, 2020. C. 4–77.
  14. Yang H., Lu J., Brown W.P., Daubechies I., Ying L. Quantitative Canvas Weave Analysis Using 2-D Synchrosqueezed Transforms: Application of Time-frequency Analysis to Art Investigation // IEEE Signal Processing Magazine. 2015. V. 32. № 4. P. 55–63.
  15. Soille P. Morphological Image Analysis: Principles and Applications. Berlin: Springer Science & Business Media, 2013. 392 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Illustration of the canvas model: a ‒ image constructed using model (1.1) at ; b ‒ Fourier spectrum of image a; c ‒ graphical interpretation of the result of the Radon transform of the Fourier spectrum.

Download (230KB)
3. Fig. 2. Example of an image of a painting canvas.

Download (164KB)
4. Fig. 3. Image of a canvas treated with a restoration compound.

Download (219KB)
5. Fig. 4. Images of a canvas sample under illumination directed: from top to bottom (a); from bottom to top (b).

Download (912KB)
6. Fig. 5. Fragment of a canvas image after preliminary processing.

Download (35KB)
7. Fig. 6. Combined Fourier spectrum of images of a canvas sample and the result of the spectrum transform: a ‒ Fourier spectrum of the sample image; b ‒ graphical interpretation of the result of the Radon transform of the image of the Fourier spectrum shown in image a.

Download (155KB)

Copyright (c) 2025 Russian Academy of Sciences